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Spectroscopic and theoretical studies of hydride radical–rare gas atom complexes (Rg–HX)
are reviewed. This family of van der Waals molecules is of interest as they can be used to
explore the characteristics of the long-range forces associated with open-shell species. Orbitally
degenerate states of HX radicals have an electronic anisotropy that results in van der Waals
interactions that are qualitatively different from those exhibited by the corresponding closed-
shell systems. Rg–HX complexes, where X is a first- or second-row p-block element, reveal
systematic trends where the anisotropic components of the physical interactions are
determined by the electronic orbital configuration. Radicals in �, � and � states with singlet,
doublet and triplet spin multiplicities have been examined. When Rg¼He, Ne or Ar the
interaction potential energy surfaces can be predicted using high-level ab initio methods.
Theoretical studies have established the methods and basis sets that are capable of providing
an accurate description of the long-range forces for open-shell molecules. Clusters consisting
of an HX molecule with multiple rare gas atoms are model systems for studies of solvated
radicals. Potential energy surfaces derived from the binary clusters are being used to construct
approximate potentials for Rgn–HX clusters. The equilibrium structures and vibrational
dynamics predicted for these systems show that solvated radicals exhibit unique properties.
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1. Introduction

The long-range interactions between a radical and a closed-shell molecule or atom
are of interest from a number of perspectives. If the interaction leads to a chemical
reaction, the long-range forces can influence the approach of the reactants to the
transition state and the energy partitioning as the products depart. The ClþHD
reaction provides a dramatic example of the influence that the attractive van der
Waals forces can exert on reaction dynamics. Skouteris et al. [1] have shown that
the propensity to form DCl at near-threshold collision energies cannot be correctly
modelled without considering the van der Waals region of the potential energy surfaces.
The outcome of an inelastic collision will also be determined by the details of the
intermolecular forces. Due to the coupling of electronic and nuclear degrees of freedom
in these events, collisional energy transfer involving open-shell molecules is a richer
and more complex phenomenon than the closed-shell equivalent [2–7]. The key to
understanding reactive and inelastic collision dynamics is knowledge of the interaction
potentials. Consequently, a great deal of experimental and theoretical effort has
been directed towards the determination of potential energy surfaces for prototypical
collision pairs. Investigations of the interactions between diatomic radicals and rare
gas atoms have proved to be particularly fruitful as these systems are both experi-
mentally convenient and theoretically tractable. From the experimental side, there are
two complementary methods used to probe potential energy surfaces. These are state
resolved measurements of inelastic collision dynamics and spectroscopic studies of
van der Waals molecules. The present review is focused on the latter, and is further
restricted to the topic of diatomic hydride radicals (HX) interacting with rare gas
atoms (Rg). This family of complexes provides valuable insights concerning the
characteristic properties of long-range forces associated with open-shell molecules.
Although these are not reactive systems, the rare gas atoms act as useful probes of the
way in which a particular radical responds in physical interactions (e.g. the influence
of polarizability, dispersion interactions, exchange repulsion, etc.). For example, studies
of CH(X )þHe interactions have provided a framework for understanding the long-
range component of CH(X )þH2 collisions [7, 8]. Theoretical potential energy surfaces
for Rg–HX pairs can be calculated using high-level ab initio electronic structure
methods. The techniques used to compute accurate long-range potentials for open-shell
systems are being thoroughly examined and refined through the studies of Rg–HX
complexes. Additional interest in HeþHX interactions has been stimulated by two
recent developments. The first is the work on the spectroscopy and dynamics of
molecules and atoms trapped in large He droplets [9–11]. HX radicals are an excellent
choice for studies of pre-reactive complexes and low-temperature reaction dynamics
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in this medium. Secondly, it has been recognized that HX radicals may be cooled to
ultra-low temperatures using magneto-optical traps [12]. One scheme for trap loading
involves 3He buffer gas cooling [13]. The applicability of this approach is critically
dependent on the details of the He–HX potential energy surfaces [14, 15].

Studies of HX radicals clustered with multiple rare gas atoms are also considered
in this review. These clusters are models systems for solvated radicals and knowledge
of their properties facilitates the interpretation of the spectroscopy and dynamical
behaviour of HX radicals trapped in rare gas solids. Once the potential energy surfaces
for a Rg–HX pair are known, data for clusters that contain multiple rare gas atoms
can be used to examine the many-body forces that contribute to the potential energy
of the composite system. This progression has been demonstrated in an elegant series
of experimental and theoretical studies for closed-shell Arn–HF clusters [16–21]. The
issue of non-additive forces for open-shell complexes has yet to be addressed in such
a detailed and systematic fashion. There are interesting subtleties for the open-shell
Rgn–HX complexes that are unique. For example, Xu et al. [22] have drawn attention
to the fact that even the basic sum of pair-potentials model is non-additive if the
radical is in an orbitally degenerate electronic state.

Recent reviews concerning open-shell complexes include the work by Kim and Meyer
on Rg–NO [23], Wheeler et al. on OH–H2 [24] and Carter et al. [25] on Rg–HX
complexes with Rg¼Ne, Ar, and Kr and X¼O or S. The electronic structure
methods used to calculate the properties of open-shell complexes have been reviewed
by Chalasinski et al. [8, 26] The present review is mostly concerned with recent progress
on the Rg–HX complexes, but the results have been organized to illustrate periodic
trends. Hence a discussion of earlier work is included where relevant. The organization
of this review is as follows. The next two sections present brief summaries of the
techniques used to observe Rg–HX complexes, the models used to analyse the spectra,
and the methods for refining potential energy surfaces through direct fitting to spectro-
scopic data. The results for binary Rg–HX are presented in section 4. These have
been organized in order of the periodic group for X. Within each subgroup the order
of the discussion is somewhat chronological, often starting with the Ar complexes
as these are generally the most heavily studied. Section 5 describes work on the clusters
with multiple rare gas atoms. Although there is very little experimental data for this
topic, the intriguing dynamical behaviour predicted by large-scale theoretical calcula-
tions is of interest in its own right, and should stimulate further experimental studies
of these clusters.

2. Experimental methods

Rg–HX complexes are generated in low-temperature supersonic expansions [27]. The
radicals are obtained using photolysis or electric discharge dissociation of a stable
precursor molecule (e.g. OH from photolysis of HO–NO2 or discharge fragmentation
of H2O [28, 29]). In most instances the radical fragments are created in the high
gas density region of the expansion, and they cool and form complexes as the
expansion evolves. However, Mackenzie et al. [30, 31] have observed SH–Ar when
SH2–Arn�2 complexes were photodissociated under near collision-free conditions.
Relatively low number densities of complexes are formed by these methods,
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so techniques with high sensitivity are needed for spectroscopic characterizations. Laser
induced fluorescence (LIF) of electronic transitions has been widely used for this
purpose. As pulsed methods of radical complex production have proved to be most
effective, pulsed excitation has been applied. Conventional pulsed dye lasers can be
operated with sufficiently narrow linewidths (around 0.06 cm�1) to resolve the rota-
tional structure when the complexing agent is a rare gas atom or a small molecule. To
achieve higher resolution, Miller and co-workers [25, 32] and Schleipen et al. [33] used
pulse amplified ring dye lasers. They were able to resolve the nuclear hyperfine structure
of OH–Rg and SH–Rg complexes (spectra recorded with an effective linewidth of
0.008 cm�1 in the near-UV). Even at the highest resolution, the electronic spectra can
pose challenging analysis problems, particularly if both the ground and excited states
are orbitally degenerate for the monomer. Fluorescence depletion techniques have
proved to be valuable as a means to establish unique rotational line assignments.

LIF of jet-cooled complexes is well suited for studies of electronically excited
states, but the data obtained for the ground states is limited (usually just the molecular
constants for the zero-point vibrational level). Provided that the electronically excited
state of the complex does not undergo rapid predissociation, dispersed fluorescence
and stimulated emission pumping (SEP) techniques can be used to observe vibrationally
excited levels of the ground state. In particular, Lester and co-workers [34–36] have
been successful in applying SEP to characterize the ground states of OH–Ne and
OH–Ar. This group has also pioneered the use of IR–optical double resonance
measurements to obtain high-resolution infrared spectra for OH complexes [37, 38].
Both fluorescence depletion and sequential excitation methods have been applied to
obtain IR spectra. The most accurate data for ground state complexes has been
obtained from microwave measurements. Endo and co-workers have examined the
microwave spectra of OH and SH rare gas complexes using pulsed Fourier transform
techniques [28, 29, 39–42].

3. Theoretical considerations

The objective of most spectroscopic studies of Rg–HX complexes has been the deter-
mination of potential energy surfaces for the van der Waals interactions. The complex
of a radical in a non-degenerate electronic state is characterized by a single potential
energy surface. When the radical is in an orbitally degenerate state the degeneracy is
lifted for non-linear geometries of the complex, and the interactions can be described
using two adiabatic potential energy surfaces. For example, consider the X2� state
of CH, which is derived from the 3�21� electronic configuration. The 1� orbitals
are primarily C 2px and 2py. A rare gas atom approaching along the axis of the
unfilled p� orbital will experience less repulsion than an atom approaching along
the half-filled orbital. The point group is lowered to Cs, and the � state splits into
electronic states of A00 and A0 symmetry [6, 7, 43–45]. For CH(X )–Rg the A00 potential
energy surface, which has the unfilled orbital in the plane of reflection, has a relatively
deep minimum for side-on approach and a strongly bent equilibrium structure.
In contrast, the A0 surface is much less attractive and less anisotropic. This situation is
illustrated by the two-dimensional potential energy surface contours for CH(X )–Ne
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shown in figure 1. For these plots, and throughout the following discussion of Rg–HX
complexes, Jacobi coordinates have been employed. These are defined by r, the
H–X distance, R, the distance between Rg and the HX centre of mass, and,
� the angle between r and R. The linear complex with Rg bound to the H atom side
of the diatom corresponds to � ¼ 0�.

As discussed in the following sections, the p� orbital occupation exerts a strong
influence on the equilibrium structures of Rg–HX complexes. Electronic structure
calculations indicate that this is primarily an exchange repulsion effect for Rg¼He

R
/a

u
R

/a
u

q/degrees

Figure 1. Contour plots of the ab initio potential energy surfaces for CH(X 2�)–Ne. The energies of selected
contours are indicated in cm�1 units, relative to the CH(X 2�)þNe dissociation asymptote. The upper and
lower traces correspond to states of A00 and A0 reflection symmetry, respectively. The contour lines for
the A00 surface are drawn at 5 cm�1 intervals, while those for the A0 surface are spaced by 2 cm�1.
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through Kr. When an empty p� orbital is available, potential energy surfaces that
are qualitatively similar to those of figure 1 are encountered. Configurations with
two or more electrons in the p� orbitals usually produce surfaces with linear minima.
The typical form for surfaces of this type is illustrated in figure 2 by the contour
diagrams for the A2� state of CH–Ne, which is derived from the 3�1�2 configuration.

Spectroscopic data for triatomic complexes cannot be inverted to determine the
potential energy surfaces. While the RKR inversion procedure provides a direct path
from the spectroscopic constants to the potential energy curve for a diatomic molecule,
there is no equivalent transformation for a polyatomic system. Instead, model surfaces
are tested and refined through forward convolution. There is a close interplay between
theory and experiment here, as the guidance provided by theoretical calculations is
often needed to achieve a satisfactory analysis of the spectrum. There are a number
of useful approximations that simplify the task of calculating the properties of Rg–HX
systems. First is the decoupling of H–X vibrational motion from the soft van der Waals
motions. As the HX vibrational frequencies are much greater than the frequencies
of the van der Waals bending and stretching modes, it is reasonable to consider two-
dimensional Rg–HX potential energy surfaces with the H–X distance frozen at the
vibrationally averaged value. The Hamiltonian for Rg–HX complexes can then be
written as [46–49]

Ĥ ¼ T̂þ Vþ ĥ ð1Þ

where T̂ is the intermolecular nuclear kinetic, V is the interaction potential energy
surface (or surfaces) and ĥ is the Hamiltonian operator for the diatom. The kinetic
energy operator consists of two parts: the radial stretch and the end-over-end rotation,

T̂ ¼ �
@2

2�@R2
þ

Ĵ� ĵ
� �2
2�R2

ð2Þ

(in atomic units) where � is the reduced mass of the complex, J is the total angular
momentum of the complex and j is the angular momentum of the diatom. Once the
vibrational motion of H–X has been factored out, it is possible to work with just the
roto-electronic part of ĥ using vibrationally averaged values for the molecular
constants. To a first approximation the reduced form of ĥ can then be written as

ĥ ¼ aSO L̂ � ŝþ b ĵ� L̂ � ŝ
� �2

ð3Þ

where L̂ is the electronic angular momentum operator, ŝ is the spin operator, aSO is
the spin–orbit coupling constant and b is the diatomic rotational constant. The
bound energy levels for a given potential energy surface (or pair of surfaces) can be
found by variational calculations or solution of the close coupling equations
using a suitable set of basis functions. For the complexes considered here, model
calculations show that the diatom is not strongly perturbed by the interaction with
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the Rg partner. Consequently, the diatomic quantum numbers provide useful state
labels for the complex. Following the convention of Dubernet et al. [46] and others,
the properties of the HX radical are designated using lower case quantum labels, while
upper case labels are given for states of the entire complex. The most useful quantum
labels are collected and defined in table 1.

High-level ab initio calculations are used to obtain the first estimates for the potential
energy surfaces. Two-dimensional potentials are generated for a grid of �i and Ri values.
The grids may be evenly spaced or distributed over quadrature points. Note that

R
/a

u

q/degrees

R
/a

u

Figure 2. Contour plots of the ab initio potential energy surfaces for CH(A2�)–Ne. The energies of selected
contours are indicated in cm�1 units, relative to the CH(A2�)þNe dissociation asymptote. The contour
lines are drawn at 5 cm�1 intervals. The upper and lower traces correspond to states of A0 and A00 reflection
symmetry, respectively.
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ab initio calculations for orbitally degenerate states yield the adiabatic A0 and A00

potential energy surfaces described above. This is not the best representation for most

dynamical calculations. As discussed by Alexander [4], it is more convenient to express

the potential energy surfaces in terms of the diabatic average Vave ¼ VA0 þ VA00ð Þ=2
and difference Vdiff ¼ �1ð Þ

l VA0 � VA00ð Þ=2 potentials. For the difference potential,

l¼ 1, 2, 3, . . . indicates the spatial symmetry of the diatomic electronic state, �, �, �,

etc. Spline fits, interpolations, or quadrature techniques may then be used in calcu-

lating matrix elements of the potential energy surfaces. Numerical solutions of the

Hamiltonian given by equation (1) may be simplified by expanding the potential

energy surfaces in terms of Legendre polynomials. This permits the use of analytical

expressions for the angular components of the potential energy matrix elements. The

average and difference potentials are represented by the expressions [46–48]

Vave R, �ð Þ ¼
Xlmax

l¼0

Vl0 Rð ÞPl0 cos �ð Þ ð4Þ

and

Vdiff R, �ð Þ ¼
Xlmax

l�m

Vlm Rð ÞPlm cos �ð Þ ð5Þ

where Vl0(R) and Vlm(R) are radially dependent expansion coefficients, Pl0 are the

regular Legendre polynomials and Plm are the associated Legendre polynomials with

m ¼ 2l.

Table 1. Definitions of quantum number labels for open-shell triatomic complexes.

Quantum
number Description

Definitions for the diatoma

� H–X vibration.
l projection of electronic orbital angular momentum along the diatomic axis.
s spin angular momentum.
� projection of s on the diatomic axis.
r rotational angular momentum.b

n sum of orbital and rotational angular momentum (rþ k).
j total angular momentum of diatom.
! projection of j on the diatomic axis (rþ k).

Definitions for the complexa

�c Rg–HX stretching vibration.
L end-over-end rotational angular momentum of the complex.
N sum of orbital and rotational angular momentum (Lþ n).
K projection of n on the body-fixed axis.c

P projection of j on the body-fixed axis.c

J total angular momentum.

aBoldface type is used to designate vector quantities.
br is used for both the rotational angular momentum and the Jacobi coordinate. The
appropriate definition is apparent from the context of use.
cFor large anisotropies the projection of the angular momentum along R remains
reasonably well defined, but n or j are no longer useful quantum numbers.
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If all of the terms in the Hamiltonian defined by equation (1) are retained, large
matrices are required to obtain converged energy levels. Eliminating the off-diagonal

elements that arise from the ðĴ� ĵ Þ2 term of equation (2) can considerably reduce the

size of the matrices [47]. This is most easily seen by considering the calculation with
body-fixed basis functions, where the projection of the diatomic angular momentum

on the R-axis is given by P or K (see table 1). The Ĵ � ĵ part of this operator mixes
basis states with different values of P or K (this is often referred to as a Coriolis

interaction) [50]. Provided that the interacting pair of P or K states are not too close

in energy, the interaction is weak and may be neglected by eliminating the off-diagonal
matrix elements of Ĵ � ĵ (centrifugal decoupling (CD) approximation).

So far we have simplified the eigenvalue problem by uncoupling the diatomic

vibrational motion and eliminating the Coriolis term. Uncoupling of the radial and
angular motions also proves to be a relatively good approximation in many instances.

This is accomplished by constructing ‘adiabatic bender’ potentials [47]. Single-point

energies are generated by diagonalizing the Hamiltonian matrix with the radial
coordinate frozen. Calculations repeated at a series of R-values define one-dimensional

potentials that are suitably averaged over the angular motions. Energy levels for the

complex are then found by solution of the radial Hamiltonian for each adiabatic bender
potential. Apart from their utility in low-cost exploratory calculations, the adiabatic

bender potentials are of value as they often yield physical insights concerning the

energy level structure of the complex. Dubernet et al. [46] took this process a step
further by considering the solutions of equation (1) with both r and R frozen. Effective

one-dimensional angular potentials were examined and a series of correlation diagrams
were developed for the bending/internal rotation energy levels for complexes in 2�, 1�,
2� and 3� states. The evolution of the energy levels was followed as a function of

the ratio V20/b, where b is the diatomic rotational constant. The effect of breaking
the symmetry of the anisotropy by including a V10 term was also explored. Dubernet

et al.’s [46] correlation diagrams provide insights that have greatly facilitated the

understanding and interpretation of the bending energy level structures. Another
valuable component of this study was a formal discussion of angular momentum

coupling in open-shell complexes. Dubernet et al. [46] defined limiting coupling cases

labelled A, B and C that are analogous to Hund’s coupling cases a, b and c for linear
molecules.

Manageably sized ab initio calculations are not presently capable of producing

van der Waals potential energy surfaces that can accurately reproduce spectroscopic
data. Hence, the theoretical potential energy surfaces need to be adjusted in order

to obtain quantitative agreement between the observed and calculated energy level

patterns. To facilitate this process, analytical representations of the surfaces are
generated. There are several options for the method used to fit potential energy

surfaces. For some of the earliest studies of OH–Rg complexes, a flexible potential

energy function was developed by Bowman et al. [51, 52]. This was defined by
generalized Morse function fits to radial cuts through the potential at �¼ 0, 90 and

180�. Angle-dependent switching functions were used to construct the entire surface
from these cuts. The approach favoured by Alexander, Dagdigian and co-workers

[44, 47, 53–55] involves fitting fixed angle (�i) slices through the potential to obtain

unique sets of radial parameters for each cut. Hutson [56] has defined potentials
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where the parameters of the radial functions are expanded in terms of low-order
polynomials of the angle �. Alternatively, fixed radius angular cuts through the surface
can be fitted to associated Legendre polynomial expansions to obtain values of Vl0ðRiÞ

and VlmðRiÞ for the i-th radial distance. These pointwise potentials are then fitted
to standard expressions such as Morse or generalized Morse functions [57, 58].

Ab initio calculations for Rg–HX complexes typically underestimate the binding
energy and overestimate the Rg–HX equilibrium bond length. Apart from these
defects, the qualitative shape of the surface is usually correct. The theoretical potentials
can be significantly improved by scaling (to adjust the bond energy) and translation
along the R-coordinate (to adjust the rotational constants). Several schemes have been
devised that permit systematic scaling and translation of a reference potential energy
surface [40, 41, 44, 47, 59, 60].

4. Binary complexes

4.1. BH–Ar and AlH–Ar

LIF spectra for the A1�–X1�þ transition of BH–Ar were reported by Hwang et al. [61].
The radical was produced by 193 nm photolysis of diborane. Twelve sharp bands
of BH–Ar were found in association with the monomer 0–0 band. The origin band
was red-shifted from the monomer parent line by 84 cm�1, which defines the difference
in the binding energies D0

0 �D0
00. Diffuse bands were seen at energies more than

92 cm�1 above the origin. Rotational analyses were carried out for 10 of the sharp
bands. Assignment of the vibronic structure was guided by the theoretical calculations
of Alexander et al. [47]. Ab initio potential energy surfaces were calculated using a
multi-reference configuration interaction method (MR–CI(D)) with a quadruple zeta

quality basis set (avqz-f ). The full counterpoise (CP) correction was applied. The
potential energy surfaces yielded bent equilibrium structures for the ground and
excited states (the equilibrium coordinates and well depths are listed in table 2). This
was consistent with the fact that the ground and excited states are derived from the
3�2 and 3�1� configurations, so that approach of the Ar atom along the axis of an
unfilled p� orbital is possible for both states. The pronounced differences in the VA0 and
VA00 potential energy surfaces of BH(A)–Ar are evident from the stationary point data
presented in table 2. Bound state calculations showed that the ab initio surfaces were
too shallow, with Re values that were too large [47]. For example, the calcu-
lated properties of BH(X )–Ar were D0¼ 29 and B0¼ 0.103 cm�1, as compared to the
observed values of D0¼ 92 and B0¼ 0.133 cm�1. Scaling of the ground state potential
by a factor of approximately 1.6 and inward translation along R by 0.5 au improved
the predicted ground state properties (D0¼ 69 and B0¼ 0.123 cm�1), but it was evident
that larger changes in the potential would be needed to achieve quantitative agree-
ment with the experimental results. Moderate adjustment of the A state potentials
produced much better agreement with the spectroscopic data. Scaling by a factor of
approximately 1.6 and inward shifting by about 0.3 au yielded predicted constants of
D0¼ 174 and B0¼ 0.164 cm�1, as compared to the measured values of D0¼ 176 and
B0¼ 0.167 cm�1.
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The bending/internal rotation energy level structure of BH(A)–Ar is of particular
interest. This structure is most easily understood by examining the correlation diagrams
of Dubernet et al. [46] and the adiabatic bender potentials. Alexander et al. [47] have
shown that the adiabatic bender model is a very good approximation for BH(A)–Ar.
Their curves for the modified potential energy surfaces are shown in figure 3. All of
the rotationally resolved bands were attributed to upper levels that correlated with the
BH(A1�, j¼ 1)þAr dissociation asymptote. The interaction with the Ar atom split the
j¼ 1 level of the diatom into states with P0 ¼ 0�, 1l, 1u, and 0þ (in ascending energy
order). Here, and in the following sections, the subscripts l and u are used to distinguish
the lower and upper energy components of the two states for a given j parent state
that have the same value for P. This convention is not applied to the P¼ 0 states
as they are differentiated by their symmetry properties (given as the þ/� superscript).
The transition from the zero-point level of BH(X )–Ar (P¼ 0þ) to the lowest energy
level of BH(A)–Ar (P¼ 0–) was not observed as it is electric-dipole forbidden.
Transitions to the P¼ 1l, 1u and 0þ states were identified in the spectrum. Note that the
1l curve in figure 3 is much deeper than the 1u and 0þ curves, and that the Re value for 1l
is smaller. These trends were clearly reflected by the molecular constants observed for
these states. Alexander et al. [47] were able to show that the P¼ 0� and 1l states
behaved as if they belonged to the deeply bound VA00 potential energy surface, while the
weakly bound P0 ¼ 1u and 0þ states were associated with correlated motions on both
VA0 and VA00.

Dagdigian, Alexander and co-workers [55, 62] also characterized the AlH–Ar
complex via the 0–0 band of the A1�–X1�þ transition. For the experimental study
AlH was generated by multiphoton dissociation of trimethylaluminum at 193 nm.
Rotationally resolved spectra were recorded for 14 bands that exhibited sharp lines.

Table 2. Stationary point data for BH–Ar and AlH–Ar complexes.

Surface De/cm
�1 �e Re/au Reference

BH(X1�)–Ar
V, ab initio 125 74.0 6.70 [47]
V, modified 198 74.5 6.22 [47]

BH(A1�)–Ar
VA0, ab initio 85 0.0 8.02 [47]
VA0, ab initio 69 125.0 7.98 [47]
VA00, ab initio 183 89.5 6.22 [47]
VA0, modified 128 0.0 7.76 [47]
VA0, modified 112 139.0 7.64 [47]
VA00, modified 280 88.5 5.97 [47]

AlH(X1�)–Ar
V, ab initio 154.7 72.7 7.17 [55]
V, modified 211.5 72.6 6.88 [55]

AlH(A1�)–Ar
VA0, ab initio 80.4 0.0 9.25 [55]
VA0, ab initio 76.7 150.9 8.51 [55]
VA00, ab initio 198.2 80.8 6.86 [55]
VA0, modified 130 0.0 8.90 [55]
VA0, modified 125.4 152.5 8.19 [55]
VA00, modified 321.2 80.5 6.54 [55]
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Several diffuse bands were also reported. As expected, the properties of AlH–Ar were
very similar to those of BH–Ar. Ab initio potential energy surfaces for AlH(A, X )–Ar
were calculated using the same level of theory that had been applied to BH–Ar
(MR–CI(D)/avqz–fþCP). The resulting surfaces had the same qualitative features
as those of BH–Ar, as can be seen from the stationary point data given in table 2,
the primary difference being that the potential wells for AlH–Ar were deeper. To
make bound state predictions that could be compared with the experimental data, the
ab initio potentials were modified by increasing the well depths (by a factor of 1.6)
and translating inward by approximately 0.3 au. Close coupling calculations with the
modified potentials gave results that were in good agreement with the spectroscopic
observations. The measured ground state constants of D0¼ 124 and B0¼ 0.0687 cm�1

were reproduced to within the experimental uncertainty. For the A state the calculated
constants for P¼ 1l (D0¼ 234 and B0¼ 0.0794 cm�1) were close to the experimental
values (D0¼ 220 and B0¼ 0.0785 cm�1). Transitions from an excited level of the
ground state were observed in the AlH–Ar spectrum, which permitted further
evaluation of the theoretical models. The lower excited level was assigned as P¼ 1l,
j¼ 1, located approximately 7 cm�1 above the P¼ 0þ zero-point level. The theoretical
calculations for both BH(A)–Ar and AlH(A)–Ar predicted that the lowest energy
state would be P¼ 0�, but this could not be verified for BH(A)–Ar due to the optical
selection rules. The transition from P¼ 1l to P¼ 0� is allowed, and this was observed
for AlH–Ar. In accordance with theory, the P¼ 0� level was found below P¼ 1l. The
AlH–Ar spectrum also contained transitions from excited state levels that correlated
with the j¼ 2 and 3 dissociation asymptotes. Overall, the theoretical calculations
were successful in reproducing the ro-vibronic structure of AlH–Ar.

4.2. CH–Rg complexes (Rg^He, Ne and Ar)

The spectroscopy and dynamics of the CH radical have been studied extensively. Much
of the interest has been driven by the importance of CH in combustion, atmospheric

R/au

7.5 8.55.5 6.5

E
ne

rg
y/

cm
−1

Figure 3. Radial adiabatic bender curves for BH(A1�)–Ar calculated for the modified potential energy
surface of Alexander et al. [47] for an effective angular momentum of L¼ 1. The P¼ 0, 1, and 2 potential
curves associated with the monomer j¼ 1, 2, 3, and 4 levels are shown. This figure is reproduced with
permission from reference [47].
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chemistry, and astrophysics. CH has also proved to be a very useful prototype for
studies of the inelastic collision dynamics of an open-shell molecule. A variety of

spectroscopic techniques can be used to detect CH in the X2�, A2� or B2�� states,

which facilitates comparisons of the dynamics for states with differing values for
the axial projection of the electronic orbital angular momentum. From a theoretical

perspective, the collisions of CH with rare gas atoms present the most tractable
model systems [63–66]. To date, collisional energy transfer processes have been

characterized for CH(X )þHe [7], CH(X )þAr [67, 68], CH(A)þHe [69, 70], CH(A)þAr

[69–72], CH(B)þHe [69, 70] and CH(B)þAr [69, 70, 73]. Potential energy surfaces
have been calculated for most of these combinations, and all show van der Waals

minima at long-range.
The CH(X )–He complex has not been observed, but the potential energy surfaces

for the CH(X )þHe interaction were calculated for use in quantum inelastic scattering

calculations. Wagner et al. [43] generated the VA0 and VA00 surfaces using CAS–SCF

calculations with the avtz basis set. The X2� state of CH is derived from the 3�21�
electronic configuration, so the interactions with a rare gas atom were equivalent to

those described above for BH(A1�). Hence the VA00 surface exhibited a van der Waals

minimum for the bent geometry (with a well depth of about 30 cm�1), while the VA0

surface was more repulsive and less anisotropic. Wagner et al. [43] presented an

interesting discussion of model potentials for CH(X )þHe. They noted that the

traditional pair-potential model using nuclear centres alone could not represent the
breaking of the orbital degeneracy that occurs for non-linear approach geometries.

To incorporate this effect they proposed a model with three different terms for
the CþHe interaction to describe approach along the px, py and pz orbitals of the

C atom. This model successfully reproduced the main features of the ab initio potentials.

Inelastic scattering calculations using the ab initio surfaces correctly predicted the
observed propensities for population of levels of A00 and A0 symmetry in upward and

downward rotational energy transfer, respectively (for low values of j). The primary

focus of the study by Wagner et al. [43] was on characterization of the repulsive
regions of the CH(X )þHe potentials. Cybulski et al. [45] revisited this problem using

methods that were better suited to treatment of the long-range interactions. They used

the UMP4 method as this could be used to decompose the van der Waals forces in terms
of various contributing interactions. The well-tempered basis sets of Hunzinaga,

augmented by f, d and mid-bond functions, were used. The qualitative properties
of the surfaces of Cybulski et al. [45] were in agreement with the results of Wagner

et al. [43]. As expected, the larger and more flexible basis set yielded deeper wells.

The global minimum for the A00 surface was De¼ 73.5 cm�1. Stationary point data
for the potentials of Cybulski et al. [45] are given in table 3.

The interactions between CH(X ) and Ne or Ar are sufficiently strong that the binary

complexes are relatively easily formed at low temperatures. Multiphoton dissociation

of Br3CH has been used as the source of the radical in studies of the complexes. The
A–X and B–X transitions of CH–Rg have been examined. Both excited states are

derived from the 3�1�2 configuration. CH–Ar was first observed via the B2�––X2�

transition. Lemire et al. [74] reported 12 bands of the complex associated with the

monomer 0–0 transition, and 11 bands associated with 1–0. The rotational structures

of eight bands were analysed. From these data, Lemire et al. [74] concluded that the
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equilibrium geometry was bent for the ground state and linear for the B state. The

rotational levels of the ground state resembled those of a molecule in a 2� state

with a modest spin–rotation splitting (i.e. levels primarily characterized by the integer

quantum number N). All of the complex bands were blue-shifted relative to the

monomer parent transitions. This, taken with the red-degraded rotational structures

of the bands, indicated that the van der Waals bond was weakened and lengthened by

electronic excitation. McQuaid et al. [75] reported a brief study of the CD–Ar bands

associated with the monomer 1–0 transition. Overall the results were consistent with

the observations for CH–Ar.
A detailed theoretical study of the CH–Ar B–X system was carried out by Alexander

et al. [44]. Two-dimensional ab initio potential energy surfaces were calculated using

MR–CI(D)/avqz–fþCP. The ground state potentials were qualitatively the same as

those described above for CH(X )–He, but more deeply bound. The equilibrium

Table 3. Stationary point data for CH–Rg complexes.

Surface De/cm
�1 �e Re/au Reference

CH(X2�)–He
VA0, ab initio 12 0 7.5 [45]
VA0, ab initio 12 140 7.5 [45]
VA00, ab initio 73.5 100 5 [45]

CH(X2�)–Ne
VA0, ab initio 24 21 7.64 [58]
VA0, ab initio 24 180 7.62 [58]
VA00, ab initio 68 76.2 5.79 [58]

CH(A2�)–Ne
V, ab initio 43 0 7.11 [58]
V, ab initio 26 180 6.82 [58]
V, modified 65 0 6.64 [58]
V, modified 39 180 6.35 [58]

CH(B2�)–Ne
V, ab initio 36 0 7.5 [78]
V, ab initio 29 180 7.26 [78]

CH(X2�)–Ar
VA0, ab initio 60 51.5 7.65 [44]
VA0, ab initio 60 180 7.76 [44]
VA00, ab initio 212 83.5 5.85 [44]
VA0, modified 78 53 7.41 [44]
VA0, modified 76 180 7.56 [44]
VA00, modified 268 84 5.64 [44]

CH(A2�)–Ar
V, ab initio 110.6 0 7.39 [57]
V, ab initio 75.9 180 6.99 [57]
V, modified 165.3 0 7.32 [57]
V, modified 141.8 180 7.2 [57]

CH(B2�)–Ar
V, ab initio 133 0 7.33 [44]
V, ab initio 87 150 7.17 [44]
V, modified 180 0 7.06 [44]
V, modified 119 150.5 6.9 [44]
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structure for the VA00 surface of CH(X )–Ar was bent (�e¼ 83.5�) with a well depth
of 212 cm�1. In contrast, the well depth of the VA00 surface was 60 cm�1. Promotion

of a second electron into the p� orbitals resulted in a potential energy surface for the

B state where the global minimum (De¼ 133 cm�1) was for the linear CH–Ar complex.
Stationary points for the potential energy surfaces of CH–Ar are listed in table 3. The

ab initio calculations correctly predicted the equilibrium structures for the X and B state
complexes and the weaker van der Waals bond for the electronically excited state.

Modified potentials were used in bound state calculations, in order to obtain results

that would be closer to the experimental data. The properties of the modified surfaces
are also presented in table 3. An important point concerning the bound state

calculations is that they were made with the assumption that the diatomic spin–orbit

coupling constant for the ground state (aSO¼ 27.9 cm�1) was not influenced by the
interaction with the Ar atom. The bond energy of CH(X )–Ar was predicted to be

D0¼ 131.8 cm�1, which was slightly lower than the experimental lower bound of

D0>161 cm�1. The rotational constant for the zero-point level calculated from the
hR�2i expectation value was B0¼ 0.167 cm�1, as compared to the measured value of

B0¼ 0.174(4) cm�1. Better agreement was obtained when the rotational constant was
derived from the calculated results using the method applied to the experimental data.

Fitting of the calculated energy levels for a range of J values to a rigid-rotor model

yields an effective constant of B0¼ 0.173 cm�1. Furthermore, the rigid rotor model
was clearly consistent with energy levels governed by the integer case (B) quantum

number N. As for BH(A)–Ar, the most deeply bound states of CH(X )–Ar were

consistent with motion on the VA00 potential. Evidently the electrostatic splitting of the
� state orbital energies dominates over the spin–orbit interaction.

Lemire et al. [74] assigned the B state energy levels accessed by the lowest energy

transitions as (00, 0), (10, 0), and (00, 1), where the labels are (nK, vc). The onset of
bands with homogeneously broadened features provided a lower bound for the

dissociation energy of D0>80 cm�1. The dissociation energy and rotational constants

predicted using the modified potential energy surface were in good agreement with
experiment (e.g. D0(calc)¼ 88.5, B0(calc)¼ 0.116, B0(exp)¼ 0.113 cm�1). The vibronic

assignments of Lemire et al. [74] were confirmed and the (00, 2) band was identified.

However, many of the observed bands remain unassigned, as unambiguous correlations
between these features and the calculated energy levels could not be established.

Alexander et al. [44] speculated that calculations based on a full three-dimensional
potential energy surface may be needed to advance the interpretation of the B–X

spectrum.
The A2�–X2� transition of CH/D–Ar has been examined by Komissarov et al. [76]

and Kerenskaya et al. [57]. The vibronic structure of the spectrum was dominated by
progressions in the van der Waals stretch (vc¼ 0–3) combined with excited bending

levels. Seven bands of CH–Ar and five bands of CD–Ar were rotationally resolved

and analysed. Like the B–X system, the A–X bands were blue-shifted relative to
monomer with red-degraded rotational structure. Again this was indicative of a

weaker van der Waals bond for the excited state. The rotational energy levels for
CH/D–Ar were well represented by a rigid-rotor model with half-integer quantum

numbers (EROT¼BJ(Jþ 1)). This was initially surprising, given the rather small

spin–orbit coupling constant for CH(A) of aSO¼ –1.1 cm�1. All levels of the monomer
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conform to the Hund’s case (b) limit. However, for CH(A)–Ar the rotational constants

are �0.11 cm�1, yielding a ratio for aSO/B above 9 which tends towards the case (A)

coupling scheme of Dubernet et al. [46] (under the assumption that the spin–orbit

interaction is unchanged by the van der Waals interaction).
Theoretical calculations were carried out to analyse the A state energy levels

and develop realistic empirical potential energy surfaces. Two-dimensional ab initio

surfaces were calculated using MR–CI(D)/avqzþCP. Contour plots of these surfaces

are shown in figure 2 and the stationary point data are given in table 3. The VA0 and VA00

surfaces were found to be very similar. This was expected as the A0 and A00 symmetry

components of the � state correspond to �x�x0–�y�y0 and �x�y0–�y�x0 orbital

occupations, both of which have cylindrically symmetric electron density distributions.

The maximum difference between the surfaces, for a curve that followed the mini-

mum energy path from �¼ 0 to 180�, was 8 cm�1, with VA0<VA00. This splitting

cannot be explained by simple electrostatic considerations. The effect is quantum

mechanical, having to do with the mixing of configurations through electron

correlation. The accuracy of the repulsive region of these potentials was verified by

Kind et al. [63], who used the ab initio results to model CH(A)þAr collisional energy

transfer data.
The energy level structure arising from the interaction of CH(A) with Ar is congested.

Due to the small spin–orbit interaction, the j¼ 3/5 and 5/2 levels of n¼ 2 are close

in energy for the free diatom. The interaction with a rare gas atom splits these levels

into four and six P-states, respectively (where each ‘state’ is a pair of parity doublets).

An approximate picture of the splittings for CH(A)–Ar is shown in figure 4, where

interleaving of the manifolds arising from j¼ 3/2 and 5/2 is evident. In order to

correlate this structure with the observed spectrum it was essential to determine which

of these bending/hindered rotor states would be optically active. The transition was

subject to the �P¼ 0, �1 selection rule. As the ground state has a well-defined value

of P¼ 1/2, transitions to the P¼ 5/2 levels would not be observable. Explicit treat-

ment of the transition intensities was required to make further progress with spectral

n=2

j=3/2

j=5/2

A2∆

CH CH-Ar

1/2*
1/2

1/2
1/2

3/2
5/2

3/2*
3/2
3/2

5/2

P

Figure 4. Energy level diagram showing the correlations between the lowest rotational levels of CH(A 2�)
and the internal rotation levels of CH(A2�)–Ar. The levels marked with asterisks are active in the A–X
spectrum.
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assignment. The first calculations used the modified CH(X )–Ar potential energy
surfaces from ref. [44] and the ab initio surfaces for CH(A)–Ar. A spectral simulation
derived from this calculation is compared with the experimental data in figure 5
(middle and upper traces, respectively), where it can be seen that the qualitative features
of the spectrum were reproduced. However, the quantitative differences in the energy
level spacings showed that the potentials were not sufficiently deep. An empirical
form for the average potential was generated by adjusting the expansion coefficients
of equation (4) to fit the observed energy level spacings. A key element of this process
was the ability to track the relative intensities of the simulated spectrum as the potential
was modified. The simulation for the optimized potential is shown in the lower trace
of figure 5. The predicted energy level spacings were in good agreement with the
experimental results for both CH(A)–Ar and CD(A)–Ar. The dissociation energy for
CH(A)–Ar could not be estimated from the spectrum as the origin band was not
observed. Instead, the data provided a lower bound for the binding energy for the
first observed state of >70 cm�1. The empirical potential yielded 72.4 cm�1 for this
interval and a bond dissociation energy of D0¼ 93.9 cm�1 for the P¼ 5/2 zero-point
level. A satisfactory fit to the rotational constants was obtained by translating the
potentials inward by 0.47 au. Stationary point data for the modified potentials are given
in table 3.

The intensity distribution of the A–X spectrum was a matter of interest in its own
right. Of the eight bending/hindered rotor states from n¼ 2 that could be accessed
by �P allowed transitions, just two dominated the spectrum. Asterisks in figure 4
indicate the specific levels. The reason why the two lowest energy P<5/2 states were
not active in the spectrum could be seen by examining the angular probability
distributions

Dð�Þ ¼

Z 1
0

�ðR, �Þ
�� ��2R2dR ð6Þ

where �ðR, �Þ is an eigenfunction of equation 1. Angular probability distributions
for states with vc¼ 0, J¼ 3/2 are presented in figure 6. These plots show that the
wavefunctions for the two lowest energy states (labelled 1 and 2) are located
in the linear minima. As the ground state has a bent equilibrium geometry, the
Franck–Condon overlap with these linear states is poor, resulting in weak transitions.
The remaining distributions correspond to bent states, so it is not obvious from the D(�)
curves why the �3 and �8 states are particularly favoured. This preference is
determined by the phase relationships among the basis set expansion coefficients.

The isotope shift for CH/D–Ar is a second point of interest. The lowest energy
bands of the A–X system are blue-shifted, relative to the monomer transitions,
by 98 cm�1 (CH–Ar) and 122 cm�1 (CD–Ar). The calculations predict an isotope shift
of 2 cm�1 for the upper state level involved, which implies that the ground state
zero-point energies must differ by 26 cm�1. Calculation of the ground state isotope
shift using the potentials of Alexander et al. [44] gives 17 cm�1. This relatively large
isotope effect is a consequence of the strongly anisotropic VA00 potential energy surface.
The discrepancy between the experimental and calculated shift is probably due to
a combination of errors in the depth and anisotropy of the ground state potentials.
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Energy/cm−1

Ab initio

Scaled

Observed 

Figure 5. Comparison of experimental and simulated spectra for the A2�–X 2� transition of CH–Ar. Upper
trace: low-resolution experimental spectrum from reference [76]; middle trace: simulated spectrum generated
from the ab initio potential energy surfaces (T¼ 4.0K); lower trace: simulated spectrum generated from the
adjusted potential energy surfaces of reference [57].
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Studies of the B–X system of CH/D–Ne were carried out by Basinger et al. [77]. The
ro-vibrational structure of CH(B)–Ne clearly reflected the nearly free internal rotation
of CH within the complex. Transitions to levels with n¼ 0, 1, and 2 were readily
identified. Figure 7 shows the observed transitions for vc¼ 0, and their relationship to
the transitions of free CH. The B state potential was just deep enough to support one
bound level with vc¼ 1 (n¼ 0, K¼ 0). The K¼ 0 and 1 components of n¼ 1 were both
above the dissociation asymptote, and the K¼ 0 rotational levels were measurably
broadened by rotational predissociation. Features associated with n¼ 2 were also
homogeneously broadened. Fluorescence depletion (FD) measurements were used to
demonstrate that the n¼ 0 and 2 levels of the complex were accessed from the ground
state zero-point level, while the n¼ 1 states were accessed from an excited level of
the ground state. As indicated in figure 7, this was due to the diatomic parity being
largely conserved in the complex. The separation of the ground state P¼ 1/2þ and 1/2�

pair was estimated to be 5 cm�1. Rotational constants of B0(1/2
þ)¼ 0.177 and

B0(1/2
�)¼ 0.167 cm�1 were determined. Due to the high laser power used to record the

0.0
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Figure 6. Angular probability distributions for CH(A2�, n¼ 2)–Ar. This plot shows the data for the
eight lowest energy levels with J¼ 1.5�.
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FD spectrum, transitions to the CH(B)þNe continuum were observed. The onset of
the continuum, combined with the frequencies for the origin band and the monomer
PQ12(1/2) line, defined bond energies of D0¼ 26.3(4) and D0¼ 19.6(3) cm�1 for v¼ 0
CH(B). The energy level structure observed for CH(B, v¼ 1)–Ne was very similar to
that for v¼ 0, the only difference being that the van der Waals bond was slightly
weakened by CH vibrational excitation (D0(v¼ 1)¼ 18.8(5) cm�1).

The rotational structure of the CH–Ne bands was significantly different from that
of the CH–Ar bands. For example, the origin band for CH–Ar exhibited the
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Figure 7. Schematic diagram showing the relationship between the allowed rotational transitions of
CH B–X and the prominent hindered internal rotation bands seen in the spectrum of CH–Ne.
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characteristics of a 2�–2� transition, while that of CH–Ne was consistent with 2�–2�
line-strengths. The rotational energy levels of the ground state were governed by

half-integer rotational quantum numbers. These observations seem to suggest a linear

geometry for CH(X )–Ne, but theoretical calculations show that the equilibrium
geometry is bent.

Ab initio potential energy surfaces for CH–Ne were generated for the ground

state and the excited states derived from the 3�1�2 configuration (X2�, A2�, B2�� and
C2�þ) (state-averaged CASSCF, MRCI/ avqzþCP [58]). Stationary point data for

the X, A and B state surfaces are listed in table 3. Bound state calculations for the

X state were carried out for the unmodified potentials. These predicted a bond
dissociation energy of 15.5 cm�1, a P¼ 1/2þ to 1/2– interval of 1.4 cm�1 and rotational

constants B0(1/2
þ)¼ 0.142, B0(1/2

�)¼ 0.136 cm�1. Qualitative details such as
E(1/2þ)<E(1/2�), B0(1/2

þ)>B0(1/2
�) and the case A angular momentum coupling

were correctly reproduced. The quantitative discrepancies indicated that the well

depths of the potential surfaces needed to be increased by a factor of approximately
1.7 and the surfaces should be translated inward along R by 0.7 au. Bound state

calculations for the B state potential have not been carried out, but the quantitative

details of the surface are in agreement with the spectroscopic data (linear equilibrium
geometry with V20 as the dominant component of the surface anisotropy). Note also

that the ab initio calculations correctly predicted that De(B)<De(X, A
00).

The A–X system of CH–Ne was particularly congested and difficult to analyse.
LIF spectra recorded at a resolution of 0.06 cm�1 could not be assigned using the

conventional combination differences approach. FD techniques were applied in order

to obtain interpretable data. For these experiments a probe laser was fixed on an
assigned rotational line of the B–X system. The depletion laser was then tuned through

A–X bands, inducing a drop in the B–X fluorescence intensity whenever a transition

from the probe-selected lower level was encountered. By this means the transitions
from a single rotational level of the ground state could be isolated. An example of

the FD spectrum connected with the J¼ 1/2 level of the ground state is shown in

figure 8. FD spectra were recorded for all J levels in the range from 1/2 to 9/2.
Transitions to the eight states from n¼ 2 with P¼ 1/2 and 3/2 were identified. This

was responsible for the complexity of the spectrum and contrasted with the situation
for CH(A)–Ar, where only two of these states were optically active. The stick spectrum

in the centre of figure 8 (trace b) shows the energy levels predicted from the ab initio

potentials. The qualitative energy level pattern predicted by the calculations was
correct, and the energy ordering of the hindered rotor states was the same as that

shown in figure 4 for CH(A)–Ar. Clearly the spacings of the predicted bands (figure 8b)

were underestimated, indicating the usual problem with underestimation of the well
depth. To fit the experimental data the average potential energy surface was modified

by increasing the V00 and V20 terms of equation (4) by a factor of 1.5. The stick

spectrum from the adjusted potential, shown as trace c in figure 8, was in excellent
agreement with the observed band structures. The angular probability distributions

for the wavefunctions of the modified potential were similar to those shown in figure 6
for CH(A)–Ar, but more delocalized. The probability distributions for the ground

state provided the key to understanding the different intensity distributions of CH–Ne

versus CH–Ar A–X band systems. The ground state wavefunction for CH(X )–Ne is far
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more delocalized than that of CH(X )–Ar, permitting favourable overlap with the
wavefunctions for all levels of CH(A)–Ne (vc¼ 0) that could be accessed by �P allowed
transitions. The probability distribution plots for CH(A)–Ne also explain why the
lowest energy bright state (P¼ 3/2 near 23 250 cm�1 in figure 8) stands apart from
the remainder of the vc¼ 0 hindered rotor levels. This state, and the lowest energy
P¼ 5/2 state, are localized near the global minimum of the potential. All other states
are delocalized to the extent that they have appreciable probability densities in the
region of the barrier that separates the two linear minima. The binding energy of
the lowest P¼ 3/2 state was predicted to be 23.1 cm�1 in agreement with the measured
value of 23.0 cm�1.

Energy/cm−1

P=3/2 P=1/2

Figure 8. Comparisons of theoretically predicted energy level patterns with the fluorescence depletion
spectrum obtained by monitoring transitions from the J¼ 1/2e rotational level of the ground state. The
calculated positions of the R and Q lines are given by solid and broken lines. Stick spectra (b) and (c) were
obtained using ab initio and scaled potential energy surfaces, respectively. P-assignments for the observed
transitions are given below the experimental spectrum (trace a).
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Inward translation of the scaled potential energy surfaces by 0.47 au yielded
agreement between the observed and calculated rotational constants [58]. In com-
paring the results it was important to include the effects of Coriolis coupling, as the
various P-states were not widely separated. There was a marked difference between
constants obtained from hR�2i expectation values and those derived by fitting to
J-dependent energies. For example, the measured constant for the highest energy
P¼ 1/2 (vc¼ 0) state was 0.185 cm�1. The values calculated from hR�2i and energy
level fitting were 0.125 and 0.185 cm�1, respectively.

Comparing the properties of CH(A)–Rg and CH(B)–Rg complexes it is apparent
that, for a given Rg, the potential energy surfaces are very similar for the two electronic
states. This supports the notion that the shapes and depths of the potentials are
primarily governed by the orbital occupation. In this context it is worth noting that
the ab initio potential energy surface for CH(C2�þ)–Ne is also very similar to the
surfaces of the A and B states [78]. When the properties of CH–Rg complexes
are compared with those of other open-shell Rg–HX systems there is one curious
anomaly. Electronic excitation of CH–Rg weakens the van der Waals bond while
BH–Rg, NH–Rg and OH–Rg complexes all show the opposite trend. Ab initio
calculations successfully predict shallower potentials for the 3�1�2 excited states of
CH–Rg, but the origin of the effect is not obvious. Decomposition of the CH–Rg
excited state interactions into components such as dispersion, dipole–induced-dipole
and exchange repulsion should provide insights concerning this behaviour.

4.3. NH–Rg complexes (Rg^He, Ne and Ar)

NH–Rg complexes provide another opportunity for studies of the van der Waals
interactions involving multiple electronic states that are derived from a common
electronic configuration, with the additional dimension of allowing comparisons of
the properties of states with triplet and singlet spin multiplicity. The ground and low-
lying electronic states of NH, X3��, a1� and b1�þ, are derived from the 3�21�2

configuration. The excited states that are readily observed by LIF are A3� and c1�,
derived from the 3�1�3 configuration. Potential energy surfaces for several NH–Rg
systems have been reported. One of the earliest high-level theoretical studies was
carried out by Jansen and Hess [79], who mapped the surfaces for the X, a, and b
states of NH–Ar. They used CASSCF calculations, combined with an average
coupled-pair functional treatment of electron correlation. Counterpoise and self-
consistency corrections were applied. With a filled 3� orbital and two p� electrons
the NH(X )–Ar potential energy surface was found to have a rather low barrier to
internal rotation, with a bent equilibrium structure (�e¼ 63�, De¼ 75 cm�1). The
potential energy surfaces for the a and b states had minima for the linear configurations,
with the same general properties as the CH(A)–Ne surfaces shown in figure 2.
The dissociation energies were De(a)¼ 80 and De(b)¼ 85 cm�1. For the reasons
discussed above for CH(A)–Rg, the difference potential for NH(a)–Ar was much
smaller than the average potential. The dominant isotropic component of the
interaction energy (V00(R)) was comparable for all three electronic states. More
recently, Kendall et al. [80] used UMP4 calculations with large basis sets (avtz and
WTdf, both augmented with mid-bond functions) to generate a more accurate surface
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for NH(X )–Ar. Their surface was similar to that of Jansen and Hess [79], but more
deeply bound (De¼ 100.3 cm�1). Stationary point data for the potential energy surfaces

of NH–Ar are collected in table 4. Kendall et al. [80] used the diffusion Monte Carlo

technique to predict the properties of the NH(X )–Ar zero-point level. This yielded
a bond energy of D0¼ 71.5 cm�1 and an angular probability distribution that indicated

nearly free internal rotation of NH(X ).
To date, there are no experimental data for the NH(X )–Ar complex. In part this

is due to the fact that most photolytic sources of NH have high branching fractions

for production of the radical in the metastable a1� state. Consequently, Randall

et al. [81] observed the c–a band system of NH–Ar using 193 nm photolysis of HNCO
to generate NH(a). Fourteen bands of the complex were observed in association with

the monomer 0–0 transition. The lowest energy bands were red-shifted, indicating
a stronger van der Waals bond for the excited state. A full theoretical treatment of

the spectrum was required before the vibronic structure could be assigned. Yang

et al. [53] calculated the potential energy surfaces for NH(c)–Ar at the MRCI(D)/avqz
level of theory, including the CP corrections. Consistent with the 3�1�3 orbital

occupation, the surfaces had minima for the linear geometries, with a dissociation

energy of De¼ 361 cm�1. The difference potential for NH(c)–Ar was significant, but not
nearly as large as the difference potentials of BH(A1�)–Ar or CH(X2�)–Ar. This was

expected, as the charge distribution for �3 is more symmetrical than that for a singly

occupied p� electron. Prior to prediction of the NH–Ar c–a spectrum, Yang
et al. [53] scaled and shifted the ab initio potentials (see table 4 for details of the

modified potentials). Bound state calculations for NH(a)–Ar produced manifolds of
closely spaced levels. The j¼ 2 level of the monomer gives rise to states with P¼ 2l, 0

þ,

1l, 0
�, 1u, and 2u, with the first three states separated by just 4.1 cm�1. This congested

structure was the result of the weak anisotropy of the NH(a)–Ar potentials. The bound
levels of NH(c)–Ar correlate with the monomer j¼ 1 and 2 levels. The former correlates

with the P¼ 1l, 0
þ, 1u, and 0� states of the complex. Yang et al. [53] noted that the

adiabatic bender potentials for the 0þ and 0– states were equivalent to motions on
the VA0 and VA00 surfaces, respectively. This was similar to the situation encountered for

BH(A1�)–Ar, but the energy ordering of the states was inverted as the VA0 surface

is more attractive for the �3 orbital occupation. The adiabatic bender curves for the
P¼ 1l and 1u states were indicative of motions that sampled both potentials. Using

the calculated results, Yang et al. [53] were able to provide vibronic assignments
for eleven bands of the c–a system. Rotational analyses of three of these bands provided

clear evidence that transitions from the P00 ¼ 2l, 1l and 0þ states contributed to the

spectrum. The Coriolis coupling between these bands was examined using a per-
turbation theory approach. To reproduce the observed state rotational energy level

pattern, Yang et al. [53] found that they had to decrease the energy spacings between

the 2l, 1l and 0þ states, which implied that the true potential energy surfaces are
even less anisotropic than the theoretical surfaces. Comparing the calculated

dissociation energies (D0(a)¼ 95, D0(c)¼ 292 cm�1) with the experimental lower

bounds (D0(a)>127, D0(c)>309 cm�1), they concluded that further deepening of
the modified potentials would be justified.

Theoretical and experimental studies of the c–a system of NH/D–Ne were carried

out by Kerenskaya et al. [82]. One of the issues investigated in this work was the validity
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of the CP correction that has been routinely applied in the calculation of potential
energy surfaces for open-shell van der Waals complexes. Experience shows that the
typical calculations described above (e.g. MRCI with an avtz or avqz basis set) will
overestimate the binding energies and underestimate the Re values due to the basis set
superposition error. Application of the full CP correction then appears to over-
compensate. Calculations for NH–Ne can be performed using a near-saturated basis
set, where the CP correction should tend to zero. Kerenskaya et al. [82, 83] explored
the approach to this limit by calculating potentials for the X, a, A and c states using
basis sets that ranged in size from avdz to av6z. Three different correlation methods,
CASPT2, CASPT3 and MRCI, were tested. Trial calculations showed that CASPT2
yielded results that were comparable to CASPT3 and MRCI, and therefore provided
the best compromise between computational expense and accuracy. Linear NH–Ne
equilibrium geometries were predicted for the singlet states (a and c) for all of the basis
sets investigated. The effect of increasing the basis set size was conveniently followed
by tracking the De and Re values. These data are presented in figure 9, which shows
results computed with and without the CP correction. Overall these plots show the

Table 4. Stationary point data for NH–Rg complexes.

Surface De/cm
�1 �e Re/au Reference

NH(X3�)–He
V, ab initio 19.84 62.3 6.33 [15]

NH(A3�)–He
Vave, ab initio 36 0 6.24 [84]
Vave, ab initio 25 180 5.67 [84]

NH(X3�)–Ne
V, ab initio 42.3 63.7 6.46 [83]

NH(a1�)–Ne
Vave, ab initio 43 0 7.41 [82]
Vave, ab initio 28 180 6.80 [82]

NH(A3�)–Ne
V, ab initio 95 0 6.41 [83]
V, ab initio 47 180 6.00 [83]

vi) NH(c1�)–Ne
Vave, ab initio 97 0 6.46 [82]
Vave, ab initio 42 180 6.10 [82]

NH(X3�)–Ar
V, ab initio 100.3 67 6.75 [80]

NH(a1�)–Ar
V, ab initio 80 0 7.66 [79]
V, ab initio 68 180 7.24 [79]
V, modified 124 0 7.27 [53]
V, modified 105 180 6.88 [53]

NH(c1�)–Ar
Vave, ab initio 361 0 6.18 [53]
Vave, ab initio 129 180 6.16 [53]
Vave, modified 541 0 5.76 [53]
Vave, modified 287 180 5.86 [53]
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anticipated trends. The uncorrected De values were always larger than the CP corrected
values, and the two appeared to converge for the largest basis set. Similarly, the
uncorrected Re values converged towards the CP corrected values. Note also that the
CP correction worked well for the smaller basis set calculations. A surprising aspect
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Figure 9. Basis set convergence properties of ab initio calculations for NH(a 1�)–Ne. Counterpoise (CP)
corrected and uncorrected binding energies and equilibrium distances, computed with truncated avdz to
av6z basis sets.
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of figure 9 was the rather erratic shape of the De and Re curves, which precluded
asymptotic extrapolation of the results to the complete basis set limit. Similarly

erratic trends have been observed in attempts to perform basis set extrapolations

for Ne–HF and Ar–HF [59].
Two-dimensional potential energy surfaces for the X, a, A and c states were

calculated using the CASPT2/av6z combination without the CP correction (stationary

point data given in table 4). Contour diagrams for the A00 surfaces of the singlet

states are shown in figure 10. The effect of electronic excitation on the well depth and

anisotropy of the van der Waals interaction is readily apparent here. Bound state
calculations were used to predict the characteristics of the c–a band system. The stable

states of NH(a)–Ne, P¼ 2l, 0
þ, 1l, 0

–, 1u, and 2u, correlate with j¼ 2. Due to the nearly

isotropic potential energy surface, the zero-point levels for these six states fell within
a 7 cm�1 energy interval. Based on these results it was expected that two or three of

the lowest energy P states would be populated under the conditions typically used

to observe Rg–HX complexes. Calculated values for the bond energy and rotational

constant were D0¼ 20.4 cm�1 and B0¼ 0.111 cm�1 (including the Coriolis effect).
Adiabatic bender curves for NH(c)–Ne are shown in figure 11, where the stable

bound states correlate with j¼ 1 (P¼ 1l, 0
þ, 1u, 0

�). States correlating with j>1 were

unstable with respect to rotational predissociation. As compared to NH(a)–Ne, the P

states of NH(c)–Ne were more widely separated due to the greater anisotropy of the
excited state surfaces. Consequently, the rotational energy levels were less influenced by

Coriolis coupling than those of the a state. Calculated values for the binding energy

and zero-point rotational constant (P¼ 1l) were D0¼ 29.6 and B0¼ 0.147 cm�1. The

large zero-point energy for NH(c)–Ne of 67 cm�1, which is 2/3 of the well depth,
resulted from the steep rise of the potential in the vicinity of the global minimum. The

energy of the zero-point level is close to the barrier to internal rotation at 70 cm�1,

so NH(c) is essentially a free rotor for all bound states. Calculations for the a and c

states of ND–Ne yielded bound state predictions that were not much different from
those obtained for NH–Ne. For example, deuteration increased the binding energy

for the c state by just 2.6 cm�1.
Experimental studies of NH/D–Ne utilized photolysis of both HNCO and NH3 to

generate NH(a). Photolysis of ND3 was used to obtain ND(a). Spectra were recorded
in the vicinity of the monomer c–a 0–0 transition [82]. In accordance with the

theoretical prediction, the rotational levels of the monomer were reflected in the spec-

trum of the complex. Bands of NH–Ne were observed in association with the monomer
P(2), Q(2) and R(2) lines. As the bands associated with Q(2) and R(2) were broadened

by predissociation, the focus of the spectroscopic work to date has been on the stable

states associated with j¼ 1. These formed a compact group of at least twelve bands

contained within a 45 cm�1 interval. Partial rotational resolution was achieved for
six features. Band contour analyses indicated that transitions from the P¼ 2l and 1l
states contributed to the spectrum. Comparisons with the theoretical results were

used to propose assignments for the seven lowest energy bands. Lower bounds for

the binding energies of D0(a)>19.8 and D0(c)>42.4 were established. Surprisingly,
the rotational constants derived from the experimental data were smaller than the

calculated values. Scaling of the latter by factors of 0.8 (a) and 0.7 (c) yielded

respectable simulations of the rotational band contours.
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Figure 10. Contour plots of the potential energy surfaces for NH–Ne. The upper panel shows the A00 surface
for NH(a1�)–Ne. The contours are drawn from the linear NH–Ne geometry contour at �41 cm�1 with
4 cm�1 intervals. The lower panel shows the A00 potential energy surface for NH(c1�)–Ne. The contours
are drawn from the linear NH–Ne geometry contour at �94 cm�1 with 6 cm�1 intervals.
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The experimental data for NH–Ne indicated that the errors in the ab initio potential
energy surfaces for the a state were relatively small. The dissociation energy was in good
agreement with the experimental lower bound. Calculated rotational constants for
the P¼ 2l and 1l levels of j¼ 2 were appreciably larger than the constants derived
from the band contour models. However, this does not necessarily imply that the Re

value had been underestimated. These constants are strongly influenced by Coriolis
mixing with the other low-lying states. Reducing the splitting between the various
j¼ 2 states would bring the effective constants into agreement with the results of
the contour analyses. This points to possible errors in the anisotropy of the surfaces.
The discrepancies for the c state surfaces were more significant and somewhat unusual.
The measured upper bound for the dissociation energy was greater than the calculated
value by a factor of 1.4. As this is too large to be a zero-point effect it shows that the
theoretical potentials were too shallow. Contrary to the usual trend, the rotational
constants were overestimated. This could not be accounted for by Coriolis effects
and clearly indicated that the theoretical potentials needed to be translated out along
the R axis by 0.4 au. Despite these discrepancies, the theoretical results for the singlet
states of NH–Ne indicated that the CP correction was not the source of the errors. The
calculations for NH(X )–Ne described below indicate that part of the problem comes
from incomplete recovery of the correlation energy. Recent calculations also show that
improved results are obtained when the basis sets are augmented by the inclusion
of mid-bond functions.

Spectra for the A3�–X3�� transition of NH–Rg (Rg¼He, Ne) provided the first
experimental data for complexes involving a radical in a 3� state [83, 84]. The rotation
and spin–orbit coupling constants for NH(A), v¼ 0, are b¼ 16.32 and aSO¼
�34.6 cm�1. The low rotational levels are intermediate between Hund’s coupling
cases (a) and (b), but close enough to case (a) that ! is a useful quantum number.

E
ne

rg
y/

cm
−1

R/au

Figure 11. Adiabatic bender potentials for NH(c1�)–Ne for an effective angular momentum of L¼ 1.
For clarity the dashed curves correspond to P¼ 0 and the solid curves to P¼ 1.
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Following the usual convention, the three spin components are labelled F1, F2, and F3,
and for low values of j these are approximately 3�2,

3�1 and
3�0. For example, the F1,

j¼ 2 level is given, in terms of pure case (a) basis functions, by the superposition

0:899j3�2i � 0:412j3�1i � 0:150j3�0i. Note that the energy ordering is !¼ 2<1<0
as the spin–orbit coupling constant is negative. NH/D(X )–Ne was produced using

photolysis of NH3/ND3 as the radical source. Under jet-cooled conditions the A–X,
0–0 band of the monomer shows three strong rotational lines originating from the X

state n¼ 0, j¼ 1 level. These are the R11(1), Q21(1) and P31(1) lines which terminate

on the upper state F1, j¼ 2, F2, j¼ 1 and F3, j¼ 0 levels, respectively. Bands of the
NH/D–Ne complex were observed in groups around these rotational lines. This pattern

indicated that the ro-vibronic structure of NH(A) was mostly preserved in the com-

plex (e.g. nearly free internal rotation with no apparent quenching of the spin–orbit
coupling). Sharp rotational structure was observed for two complex features that

were close to the monomer R11(1) line (bands 1 and 2) and one band associated with

Q21(1) (band 3). The rotational structures of bands 1 and 3 were well resolved and
readily assigned to P0 ¼ 2–P00 ¼ 1 and P0 ¼ 0––P00 ¼ 0� transitions, respectively. The spin

splitting of the 3�� ground state was not resolved. Band 2 was a congested overlapping
of at least four vibronic transitions. On close examination of band 3 it could be seen

that the lines were perceptibly broadened by predissociation. The complex features

above the Q21(1) line did not show resolvable structure due to rapid predissociation.
Upper bounds for the bond energies of D0(A)<40.4 and D0(X )<28.0 cm�1 were

based on the onset of predissociation.
The CASPT2/av6z calculations for NH(X )–Ne predicted a linear equili-

brium geometry [83], which was suspicious, as the highest level calculations for

NH(X )–Ar [80] and NH(X )–He [15] predicted bent equilibrium structures. The

CASPT2/av6z surface was weakly anisotropic, such that small errors could have a
dramatic effect on the angular location of the minimum. To test the robustness of

this result, further calculations were carried out using the more accurate RCCSD(T)

method [83]. For all basis sets larger than avdz this method predicted a bent equilibrium
geometry, with a Jacobi angle near 60�. Additional improvements were achieved by

adding mid-bond functions to the basis set (RCCSD(T)/av6z–BFþCP). Compared to

the CASPT2/av6z results, RCCSD(T)/av6z–BFþCP did not change the well depth
significantly, but the equilibrium angle shifted to 63.7� and the Re value contracted

from 7.36 to 6.46 au. Bound state calculations for the RCCSD(T)/av6z–BFþCP
potential predicted a bond energy of D0(X )¼ 23.5 cm�1 and rotational energy levels

that were governed by the end-over-end rotational quantum number L. The spin

splitting was of the order of 0.01 cm�1, which is well below the resolution of the
available spectra. The calculated bond energy was within the experimental upper

bound, and the rotational constant, B0¼ 0.147 cm�1, was on the edge of the error range

for the measured constant B0¼ 0.149(2) cm�1.
Energy levels for NH(A)–Ne were calculated using the CASPT2/av6z surfaces.

Adiabatic bender curves for states correlating with the lowest energy levels of NH(A)

are shown in figure 12. Bands 1, 2 and 3 of the A–X spectrum could be assigned by
inspection of this figure. Band 1 terminated on the well-separated P0 ¼ 2l, F1 state

while the closely spaced P0 ¼ 1l, 0
�, 2u and 1u states were responsible for the congested

structure of band 2. Band 3 is assigned to the P0 ¼ 0–, j¼ 1, F2 level, which, consistent
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with the observed line broadening, lies above the NH(A, j¼ 2, F1)þNe dissociation
limit. The calculated binding energy for P¼ 2l, F1 of D0(A)¼ 30.6 cm�1 was below the
experimental upper bound, and the rotational constants were in reasonably good
agreement with the observed values. The calculations correctly predicted that the
P0 ¼ 0�, F2 state has the largest rotational constant.
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Figure 12. Adiabatic bender potentials for NH(A)–Ne. The upper and lower panels show states of þ and �
parity, respectively. These curves were calculated for total angular momentum J¼ 2. The dissociation
asymptotes are labelled by the NH angular momentum ( j ) and the spin–orbit component.
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Given that the A and c states of NH arise from a common configuration, it was
surprising to find that ab initio potentials determined at the same level of theory

were not of equivalent quality when evaluated against the experimental data. The
theoretical surfaces for the two electronic states are very similar, in keeping with the

expectation that they are primarily determined by dispersion and repulsive exchange
forces. The experimental data indicate more substantial differences. In future work

it will be of interest to see if this behaviour can be reproduced using methods that
are more sophisticated in their treatment of the correlation energy.

Recent work on the NH(X )þHe interaction potential has been stimulated by the

recognition that NH(X ) is a promising candidate for studies of ultra-cold molecules.
The large rotational constant and magnetic moment of NH(X ) are well suited for

techniques that entail 3He buffer gas loading followed by evaporative cooling in

a magnetic trap [85]. For the radicals to remain in the trap it is essential that the
cross-section for Zeeman relaxation induced by collisions with He be extremely

small. This cross-section has not been measured, but theoretical calculations [14, 15]
indicate that it is a factor of at least 104 smaller than the elastic cross-section

at temperatures in the range 0.5–1K. The reliability of this prediction is critically
dependent upon the accuracy of the theoretical NH(X )–He potential energy surface.

Krems et al. [14] and Cybulski et al. [15] calculated a two-dimensional potential energy
surface for NH(X )þHe (RCCSD(T)/avqz–BFþCP). The equilibrium parameters

of this surface were �e¼ 62.3�, Re¼ 6.33 au and De¼ 19.84 cm�1. Bound state calcu-

lations showed that only the zero-point level was stable, with a binding energy of
D0¼ 4.4 cm�1. The rotational energies followed the expression EROT¼B0L(Lþ1)

with a rotational constant of 0.321 cm�1. The spin splitting was below 0.01 cm�1

and levels with L>3 were predicted to be unbound. Kerenskaya et al. [84] observed

the NH–He complex using the A–X transition, hence the NH(A)þHe potential
energy surfaces were also of interest. Jonas and Staemmler [86] calculated the A

state potentials using the correlated electron pair approximation with an augmented,
triple zeta quality basis set and CP corrections. Although the focus of this study

was on the repulsive regions of the potentials, they noted that there were van der
Waals minima for the linear geometries, with a well depth of De¼ 21 cm�1 for

NH–He. Jonas and Staemmler [86] estimated that the De value from their calcula-

tions would be too small by a factor of 2. Their potentials were used by Neitsch
et al. [87] to predict inelastic scattering cross-sections for NH(A)þHe collisions.

Kerenskaya et al. [84] used CASPT2/av6z calculations to better characterize the
attractive regions of the potentials. The resulting surfaces were deeper (De¼ 40 cm�1)

than those of Jonas and Staemmler [86] with a shorter equilibrium bond
distance (Re¼ 6.24 versus 6.6 au). Further details are given in table 4. Despite the

fact that De(A) was twice the depth of De(X), bound state calculations with the
new A state potentials yielded a binding energy of D0(A)¼3.3 cm

�1 that was less

than that of the ground state. The steep anisotropy of the potentials in the vicinity of

the global minimum was partly responsible for this unusually large zero-point
energy. The calculated zero-point rotational constant for the P¼ 2l state was

0.303 cm�1. Adiabatic bender curves for NH(A)–He were qualitatively the same as
those shown in figure 12 for NH(A)–Ne, with the same energy ordering for the various

P states.
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Kerenskaya et al. [84] obtained NH(X )–He complexes by photolysis of NH3 in
a He free-jet expansion. Source pressures in excess of 25 atm were needed to achieve
conditions where viable concentrations of the complex could be generated. The complex
was observed in association with the monomer 0–0 and 1–0 transitions. Bands
terminating on the P0 ¼ 2l and 1l states were observed near the monomer R11(1) line.
At higher energy a P0 ¼ 0��P00 ¼ 0� band was found on the low-frequency side of
the monomer Q21(1) line. The lines of this band were broadened by spin–orbit
predissociation. The lifetime of the J¼ 1 level for v¼ 0 was approximately 30 ps.
Transitions to or from rotational levels with L>3 were not observed. Dissociation
limits could not be extracted from the spectra, but the difference between the upper
and lower state binding energies of D0(A)�D0(X )¼ 0.6 cm�1 was defined. Taken
with the theoretical value for D0(X ) this yields a value of 5.0 cm�1 for D0(A). The
discrepancy with the theoretical value can be readily accounted for by small errors
in the anisotropy of the A state potentials. A second indication that the anisotropy
should be decreased was given by the interval between the P¼ 1l and 2l states.
The measured value for this spacing was 1.3 cm�1 while the calculations predicted
2.2 cm�1. The experimental value for the rotational constant of NH(X )–He was
B0¼ 0.334(2) cm�1. This was larger than the effective rotational constant derived from
the theoretical calculations of Cybulski et al. [15]. Average bond distances, estimated
from the relationship hR�2i�1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2=2�B

p
were 7.71 au (theory) and 7.56 au (exp),

which suggests that Re may be slightly overestimated by the ab initio calculations.
Detection of NH(X )–He demonstrated that a bound state of the complex exists

and the rotational constant data indicated that the potential energy surface of Cybulski
et al. [15] is reasonably accurate. However, Cybulski et al. [15] have shown that the
calculated Zeeman relaxation cross-sections are extremely sensitive to the details of
the potential. Further calculations preformed at even higher levels of theory may be
needed to confirm convergence of the results for the Zeeman relaxation cross-sections.

4.4. OH–Rg and SH–Rg complexes

The OH–Rg complexes are the most extensively studied family of open-shell van der
Waals molecules [25, 88]. While the data for SH–Rg complexes are not as complete,
they have also been the focus of a good number of studies. A comprehensive review
of the spectroscopic and theoretical work for the complexes of OH and SH with
Rg¼Ne, Ar and Kr has been provided by Carter et al. [25]. This covers work pub-
lished before the year 2000. In the following I will summarize the progress made from
2000 onwards.

The larger part of the experimental data for OH–Rg complexes has been derived
from studies of the A2�þ�X2� transition. As electronic excitation results in a
substantial change in the interaction potential, LIF spectra for OH–Rg complexes
access a wide range of vibrationally excited levels of the A state. These data have
been used to generate empirically refined potential energy surfaces. These exhibit
minima for the linear geometries, with the global minimum for OH–Rg. The best
available potentials for OH(A)–Ne, Ar, and Kr are still those described by Carter
et al. [25] (see table 5). Recent progress for the A-state complexes includes theoretical
studies of OH(A)–He and OH(A)–Ne, and experimental observations of OH–He.
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Lee et al. [89] calculated ab initio potential energy surfaces for the A and X states of
OH–He and OH–Ne. They used the RCCSD(T) method with avtz and avqz basis
sets. Mid-bond functions were included and the CP correction was applied. Bound

state calculations for OH(A)–Ne using the ab initio potential gave results that were
in reasonable agreement with the experimental data, but the vibrational intervals

were systematically underestimated. Better agreement was obtained for the rotational
constants. Lee et al. [89] found that the prediction of the vibrational energies was
optimized when the potential was scaled by a factor of 1.12. The ab initio potential

for OH(A)–He had the same qualitative form as the potentials for other OH(A)–Rg
complexes. The global minimum was located at De¼ 121.9 cm�1, Re¼ 5.28 au. Bound

state calculations for OH(A)–He yielded a binding energy of D0¼ 7.12 cm�1 and
a rotational constant of B0¼ 0.3695 cm�1.

Calculations for OH(X )–He predicted that the complex should be bound by 6 cm�1.
Han and Heaven [90] recently verified the existence of a stable OH–He complex

using the A–X bands. Transitions from the ground state P¼ 3/2þ, J¼ 3/2 level to
levels associated with OH(A), n¼ 0, 1 and 2, were observed. The OH–He origin band
was red-shifted from the monomer P1(3/2) parent line by 1.6 cm�1. Unfortunately

the rotational structure of this band was obscured by the very intense monomer line.

Table 5. Stationary point data for OH–Rg complexes.

Surface De/cm
�1 �e Re/au Reference

OH(X2�)–He
VA0, ab initio 30.02 68.6 5.7 [89]
VA0, ab initio 27.06 0 6.55 [89]
VA00, ab initio 27.06 0 6.55 [89]
VA00, ab initio 21.79 180 6.09 [89]

OH(A2�)–He
V, ab initio 121.9 0 5.28 [89]
V, ab initio 51 180 5.13 [89]

OH(X2�)–Ne
VA0, ab initio 56.65 69.8 5.84 [89]
VA0, ab initio 53.46 0 6.58 [89]
VA00, ab initio 53.46 0 6.58 [89]
VA00, ab initio 44.66 180 6.16 [89]

iv) OH(A2�)–Ne
V, ab initio 229.8 0 5.43 [89]
V, ab initio 83.9 180 5.42 [89]

OH(X2�)–Ar
VA0, ab initio 147.3 0 7.08 [93]
VA00, ab initio 147.3 0 7.08 [93]
VA00, ab initio 95.5 180 6.7 [93]

OH(A2�)–Ar
V, empirical 1096.4 0 5.35 [25]
V, empirical 938.6 180 4.2 [25]

OH(A2�)–Kr
V, empirical 2418.4 0 5.24 [25]
V, empirical 1900 180 4.16 [25]
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The OH–He features associated with the n¼ 1 rotational state are shown in figure 13.
A similar pattern of complex features, flanking the monomer R1(3/2) line, was observed
for n¼ 2. The features associated with n¼ 1 and 2 were scattering resonances that
were well above the OH(A, n¼ 0)þHe dissociation asymptote. The ab initio potential
of Lee et al. [89] was used to calculate the resonance energies and widths. Resonances
with angular momentum N¼ 0, 1, 2, and 3 were predicted for n¼ 1. The pattern
of energy intervals for these resonances indicated that K was a well-defined quantum
number. The K¼ 0 resonances had greater widths than those for K¼ 1. This was
expected as K¼ 0 corresponds to rotation of OH in the triatomic plane, where the
coupling between the angular and radial motions will be the strongest. The calculated
resonances are compared with the experimental spectrum in figure 13. Overall the
agreement is good, but the overestimation of the spacing between the K¼ 0 and K¼ 1
groups suggests that the anisotropy of the potential energy surface should be reduced.
Calculated resonances for the n¼ 2 group were also in reasonable agreement with the
observations. K was not a good quantum number for this group, mostly due to the
Coriolis interactions between the zeroth-order K¼ 0, 1, and 2 states. The energies of
the OH–He transitions, relative to the monomer lines, were consistent with the binding
energies calculated by Lee et al. [89]. One interesting fact of OH–He is the prediction
that electronic excitation increases the De from 30 to 122 cm�1, while the D0 value
increases by just 1.1 cm�1 (1.6 cm�1 observed). This is the consequence of an unusually

32460.0 32470.0 32480.0 32490.0

Energy/cm−1

In
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ns
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1 2 3 N

Q1(3/2)+QP21(3/2)

K=1

exp.

calc.

0 1 2N

K=0

Figure 13. LIF spectrum and scattering resonance simulation for the A–X transition of OH–He. The
upper trace shows the spectral features of OH–He associated with the n¼ 1 rotational level of OH(A).
The intense line in the centre of this spectrum is from the monomer. The lower trace is a simulation
of the OH–He spectrum derived from scattering resonance calculations.
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large zero-point energy effect in the excited state. Simulation of the spectrum
supports this interpretation. A shallower potential surface for OH(A)–He, modified

in a way that permits the reduction of De while maintaining D0, would not have suffi-

cient anisotropy at long range to produce the splittings seen in the resonance structures.
In general, the experimental data for the X2� states of OH–Rg complexes are more

limited than those available for the A states. Hence our knowledge of the potential

energy surfaces is more heavily dependent on ab initio calculations. The most extensive
data are for OH(X )–Ne and OH(X )–Ar, where vibrationally excited levels have

been characterized using dispersed fluorescence and SEP techniques [34–36]. Additional

data for OH(X )–Ar are available from microwave measurements and a high-resolution
IR study of bands associated with the OH fundamental [37]. Initially, theoretical

calculations for OH(X )–Ne and OH(X )–Ar predicted linear equilibrium geometries
for both the A0 and A00 surfaces [25, 88]. More recent studies, carried out with higher-

level methods and larger basis sets, show that the A0 potentials for He and Ne

favour bent configurations (see table 5; note that the half-filled p� orbital of OH(X ) is
in the molecular plane for the A0 surface and the field orbital is in-plane for A00). Lee

et al. [89, 91] evaluated the quality of their OH(X )–Ne potentials by calculating

vibrational energies, rotational constants and scattering resonances. The results were
compared with the experimental data and calculations performed using the potential

energy surfaces of Yang et al. [54]. The bound state energies and rotational constants

were close to the experimental values for both sets of potentials, provided that the
Coriolis mixing was taken into account. Although the potentials of Lee et al. [89]

were quite similar to those of Yang et al. [54], the degree of rotor basis state mixing
for the potentials was significantly different. Lee et al. [89] found that both the

Coriolis operator and the difference potential induced considerable mixing of the

various zeroth-order P states, while P remained as a good quantum number when
the potentials of Yang et al. [54] were used. Conflicting predictions for the energy

ordering of the P¼ 3/2– and 1/2þ states was one consequence of these differences.

Since the P¼ 3/2� state has not been observed, the true ordering is not yet known.
Scattering resonance calculations for OH(X )–Ne yielded similar insights [91]. While

the potentials of Yang et al. [54] and Lee et al. [89] both gave respectable agree-

ment with the measured resonance energies they differed in their predictions for the
resonance lifetimes. Due to details of the state mixings, the lifetimes of Lee et al. [91]

were shorter and showed strong dependencies on the nominal value of P and the parity.
Curiously, neither of the model potential sets could reproduce the magnitude of the

increase of the resonance lifetimes that accompanied excitation of the van der Waals

stretch. From these studies it was evident that the scattering resonances provide
a very exacting test of the quality of the potential energy surfaces.

Empirically adjusted potential energy surfaces for OH(X )–Ar were reported in 1993

by Dubernet and Hutson [92]. These surfaces were successful in fitting nearly all of

the experimental data available at that time. The one unresolved problem was with
the parity splittings for the P¼ 3/2þ and 1/2þ states. Dubernet and Hutson [92] found

that the ratio of the measured parity splittings could not be obtained with any realistic
adjustment of the potentials. This anomaly has since been resolved by Bonn et al. [37],

who have corrected the experimental value for the P¼ 1/2þ parity splitting constant.

In this work, high-resolution IR spectra were recorded for transitions to the P¼ 3/2þ
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and 1/2þ states of OH(X, v¼ 1)–Ar. The parity splitting constant for the P¼ 1/2þ

state was found to be about three times larger than that derived from the partially

resolved SEP spectrum. Bonn et al. [37] successfully reinterpreted the SEP data using

the revised value for the parity splitting constant. Concurrent with the experimental
work, Klos et al. [93] calculated new ab initio surfaces for OH(X )–Ar using the

UMP4 method with an avtz–BF basis and CP corrections. The global minimum of the
A0 surface was found to be linear (De¼ 147.3 cm�1) but this surface also supported

a local minimum for a bent geometry (De¼ 135.5 cm�1, �e¼ 75.1�) and a saddle point

at �¼ 180�. The A0 surface had the usual linear minima, separated by a saddle point
near �¼ 105� (see table 5). Bound states calculated from these surfaces were in very

good agreement with the experimental results, including the P¼ 1/2þ parity splitting.

The only notable discrepancy was overestimation of the P¼ 3/2þ–1/2þ interval (10.8
versus 9.2 cm�1), indicative of a small error in the anisotropy of the average potential.

Carter et al. [25] reviewed the spectroscopic data for SH/D–Ne, Ar, and Kr com-

plexes that had been derived from LIF and dispersed fluorescence studies. Empirical
potential energy surfaces were fitted to these data. Guided by the results for

OH–Rg complexes, the potentials were constructed with global minima for the linear

SH–Rg geometry. During the past few years the characterization of SH–Rg complexes
has been advanced by a variety of theoretical calculations, and detailed studies

of SH(X )–Rg using microwave techniques. An unexpected general trend was the

discovery that the potential energy surfaces for the ground state complexes have
linear Rg–SH(X ) equilibrium structures. However, the anisotropies of the surfaces are

so weak that the vibrationally averaged structures for the zero-point levels favour the
SH–Rg geometry.

Ab initio surfaces for the X and A states of He–SH and Ne–SH were calculated by

Cybulski et al. (RCCSD(T)/avtz–BFþCP) [94]. The stationary points for these

surfaces are listed in table 6. The A0 surfaces exhibited secondary minima for bent
configurations and saddle points for linear SH–He/Ne, while the A00 surfaces had two

linear minima. The binding energies for SH–He, D0(X )¼ 6.2 cm�1, D0(A)¼ 6.8 cm�1

were found to be similar to those for OH–He. The SH–He complex has not been
observed to date. The potential energy surfaces for SH(X )–Ne were evaluated

against the experimental data derived from studies of the A–X transition. Cybulski
et al. [94] found that their surfaces yielded rotational constants that were in good

agreement with the experimental values, and the binding energy of D0¼ 31.7 cm�1 was

within the experimental error limits. The fit to the bound vibrational energies was
respectable, but not quite as good. The dispersed fluorescence data also contained

transitions to scattering resonances above the SH(X, !¼ 3/2, j¼ 3/2)þNe dissociation

limit. Lee and McCoy [91] showed that their surfaces could also reproduce the
resonance energies. In comparing the properties of SH(X )–Ne with OH(X )–Ne, Lee

and McCoy [91] noted that the state mixing induced by the difference potential was

less important for SH–Ne. This was a consequence of the larger spin–orbit interaction
of SH(X ). Suma et al. [40] recorded microwave spectra for SH(X )–Ne and used the

results to refine the ground state potentials. Their reference potentials were obtained
from ab initio calculations that were carried out at the same level of theory as the

work of Cybulski et al. [94]. To fit the microwave data the average potential was

adjusted by a slight inward translation and small corrections to the anisotropy that
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lessened the energy difference between the linear minima. In addition to giving an

excellent fit to the microwave data, the adjusted potentials yielded energies for vibra-

tionally excited levels and scattering resonances that were in good agreement with the

dispersed fluorescence data. This unusual circumstance, where microwave data for

the zero-point level could be used to define the properties of the potentials at locations

far from the equilibrium geometry, was a consequence of the large-amplitude motion

associated with this level.
Sumiyoshi and Endo [41] carried out a similar study of the microwave spectrum of

SH(X )–Ar. Two methods of analysis were employed. First, the microwave transitions

were fitted using a traditional effective Hamiltonian. Interesting details of the constants

determined by this approach included a negative centrifugal distortion constant and

a significantly reduced value for the leading hyperfine coupling constant (as compared

Table 6. Stationary point data for SH–Rg complexes.

Surface De/cm
�1 �e Re/au Reference

SH(X2�)–He
VA0, ab initio 25.97 54.4 6.88 [94]
VA0, ab initio 25.27 180 6.79 [94]
VA00, ab initio 25.27 180 6.79 [94]
VA00, ab initio 21.16 0 7.8 [94]

SH(A2�)–He
V, ab initio 49.3 0 7.09 [94]
V, ab initio 69.97 180 5.66 [94]

SH(X2�)–Ne
VA0, ab initio 57 57.2 6.83 [94]
VA0, ab initio 54.27 180 6.79 [94]
VA00, ab initio 54.27 180 6.79 [94]
VA00, ab initio 45.75 0 7.75 [94]
Vave, modified 53.13 180 6.75 [40]
Vave, modified 48.26 0 7.71 [40]

SH(A2�)–Ne
V, ab initio 103.2 0 7.04 [94]
V, ab initio 107.9 180 5.98 [94]

SH(X2�)–Ar
Vave, ab initio 121.66 0 8.12 [41]
Vave, ab initio 123.67 180 7.26 [41]
Vave, modified 115.81 34.2 7.74 [41]
Vave, modified 121.59 180 7.16 [41]

SH(A2�)–Ar
V, ab initio 742.5 0 6.42 [95]
V, ab initio 673.7 180 5.316 [95]
V, empirical 877.2 0 6.46 [25]

SH(X2�)–Kr
Vave, ab initio 160.5 41.4 7.89 [40]
Vave, ab initio 163.8 180 7.41 [40]
Vave, modified 160.4 46.8 7.76 [25]
Vave, modified 167.5 180 7.37 [25]

SH(A2�)–Kr
V, empirical 1706.2 0 6.17 [25]
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to free SH). The second approach was to fit empirically adjusted potential surfaces
to the data. The reference potential for this process was obtained from ab initio
calculations (RCCSD(T)/avqzþCP). The initial form for the average potential had
linear minima with well depths of De(0

�)¼ 115 cm�1 and 124 cm�1 (180�). The fitted
potential was less deep by 2 cm�1 for �¼ 180�, but the critical adjustment was reduction
of the well depth and anisotropy of the potential near �¼ 0� (De(0

�)¼ 108 cm�1). These
changes were needed to reproduce the negative centrifugal distortion constant. The
leading term of the difference potential was reduced by 15%. The fitted potentials
reproduced the hyperfine splittings of the spectrum using the unmodified hyperfine
constants for free SH. Hence it was shown that the smaller constant obtained from
the fit to the effective Hamiltonian was influenced by vibrational averaging, rather
than a tangible perturbation of the SH electronic structure.

Ab initio calculations for SH(A)–Ar were reported recently by Hirst et al. [95]
(RCCSD(T)/av5zþCP). Details of this surface are given in table 6. The rotational
constants and binding energy (D0¼ 446.7 cm�1) were in agreement with the experi-
mental data, while the vibrational intervals were underestimated by about 5%. All
of the observed levels of SH(A)–Ar have been assigned to states that are localized
in the �¼ 0� well, and this was confirmed by Hirst et al. [95]. However, they also
found that several bound states were supported by the �¼ 180� well. They discussed
the possibility that electronic predissociation of the latter may have precluded the
observation of these states in previous experiments, where the detection of long-lived
fluorescence was used to discriminate against the monomer spectrum.

The microwave spectrum of SH(X )–Kr was recorded by Suma et al. [40]. The data
were analysed by direct fitting of the potential energy surfaces. Potentials obtained
from CCSD(T)/avqzþBFþCP calculations were used for the initial estimate. The
average potential for SH–Kr was a little different from those for –Ne and –Ar in that
the secondary minimum corresponded to a bent configuration with � near 50�. The
well depths for the linear minima were De(0

�)¼ 156 cm�1 and De(180
�)¼ 164 cm�1

(calculated). Differences between the average ab initio surface and the fitted potential
were most noticeable near the linear minima. The well depth at 0� was decreased by
3 cm�1 while that at 180� was increased by 3 cm�1. The leading term of the difference
potential was decreased by 5% and the surfaces translated inwards by 0.04 au.
Vibrationally excited levels of SH(X )–Kr have not yet been observed, and Suma et al.
[40] did not report predictions for these levels based on their adjusted potentials.

5. Complexes of HX radicals with multiple Rg atoms

Open-shell molecules interacting with small clusters of rare gas atoms provide useful
model systems for studies of the solvation of radicals, the energy level structures
associated with solvated radicals, and the relative importance of many-body effects
in determining the potential energy surfaces for clusters with multiple interacting
partners. The experimental data for Rgn–HX clusters are rather sparse at present. The
frequencies for A–X vibronic bands of the OH/D–Nen complexes with n¼ 2� 4 were
reported by Lin et al. [96]. Miller and co-workers [97] recorded rotationally resolved
electronic spectra for OH/D–Ne2, but the analysis of these data has not been completed.
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Large CH–Arn clusters (n� 50) have been observed in association with the A–X
transition [98]. Despite the lack of data, there have been a number of interesting
theoretical studies of Rgn–HX complexes. This work has been stimulated by the
availability of good-quality potential energy surfaces for the binary complexes, and
it parallels the extensive studies of closed-shell Rgn–HX complexes that have been
carried out in recent years [16–21].

A model for the interaction of a molecule in a 2� state interacting with multiple
rare gas atoms has been developed by Xu et al. [22, 99, 100] They represent the
components of the potential energy surfaces that arise from the Rg–HX interactions
in terms of the matrix

VRgHX ¼
VI VII

V�II Vi

� �
ð7Þ

where

VI ¼ �lh jV �lj i ¼
Xn
k¼1

Vave Rk, �kð Þ ð8Þ

VII ¼ �lh jV 	lj i ¼
Xn
k¼1

VdiffðRk, �kÞ expð�2li�kÞ ð9Þ

and Rk, �k and �k are the polar coordinates for the k-th atom. To obtain the complete
potentials the pairwise interactions between the Rg atoms and the spin–orbit inter-
action energies are added to the diagonal elements of equation (7), and the resulting
matrix is diagonalized. Xu et al. [100] first applied this model to CH(X )–Arn complexes
with n¼ 2–15. Simulated annealing and Newton–Raphson minimization techniques
were used to locate minimum energy structures. The structure for the CH–Ar2 complex
was found to be dramatically different from the structures of closed-shell Ar2–HX
clusters or the open-shell Ar2–NO(2�) complex. In the latter the Ar atoms form a
dimer that interacts with HX or NO. However, CH(X )–Ar2 has a planar equilibrium
structure with the Ar atoms on either side of the C atom. This configuration loses
the stabilization energy from the Ar–Ar interaction, but this is more than offset by the
energy gained by allowing both Ar atoms to approach along the axis of the empty
p� orbital, thereby accessing the deepest minimum of the Ar–CH potential energy
surface. This stable CH–Ar2 unit has a strong influence on the structures of the
complexes with n¼ 3 and 5–11. While the analogous closed-shell complexes had
the form of HX interacting with a Rgn cluster, the interaction with CH distorted the
Rgn cluster to incorporate the stable CH–Ar2 structure (the energy advantage of
making a tetrahedral Ar4 cluster wins out for n¼ 4). For n¼ 12–15 the minimum
energy structures preserved the CH–Ar2 motif, but this unit was found at the surface
of the cluster as this minimizes the disruption of the remaining Ar–Ar interactions.
This study clearly demonstrated that the factors influencing the solvation of an
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open-shell molecule can be qualitatively different from those that govern closed-shell
systems. The insights gained from the calculations of Xu et al. [100] also shed

light on the opposing spectral shifts observed for CH–Arn clusters and matrix

isolated CH. As described in the section on binary clusters, the electronic origin band
for the A–X transition of CH–Ar is blue-shifted relative to that of the monomer.

Burroughs et al. [98] found that the cluster spectrum remained blue-shifted as the cluster
size was increased (the largest clusters examined were estimated to contain about 50Ar

atoms). However, the A–X transition of CH isolated in a solid Ar matrix was red-

shifted relative to free CH by 31 cm�1. The B–X transition also shows a blue-shift
for CH–Ar and a red-shift in an Ar matrix [98]. In part, these opposing trends can

be understood in terms of the stabilization of the ground state. By placing the CH

on the outer surface, the CH–Arn clusters can adopt structures that maximize the
attractive interaction with the empty p� orbital, and minimize repulsive interactions

with the half-filled orbital. In the matrix, CH is embedded in the rare gas solid and

the lattice opposes the symmetry-breaking optimization of the solvent cage. This
will destabilize CH(X ) in the matrix, thereby contributing to the observed red-shift.

OH(X2�)–Arn clusters with n¼ 2–15 were examined by Xu et al. [99]. Their study

offers an interesting contrast to the work on CH–Arn as the equilibrium structure
for the binary complex is linear, and the magnitude of the spin–orbit coupling constant

for OH is larger than that for CH (�139 cm�1 versus 28 cm�1). The OH(X )–Arn
cluster geometries were found to be similar to those of Arn–HCl. For n<10 they
corresponded to symmetric Arnþ1 clusters, with one of the Ar’s replaced by OH. For

example, the lowest energy form of OH–Ar4 could be derived from the trigonal
bipyramid form of Ar5 by substituting OH for one of the equatorial Ar’s (C2v

symmetry). The next lowest energy structure was obtained by substituting for one of the

axial Ar atoms (C3v symmetry). High-symmetry structures were predicted, indicating
that the moderately large spin–orbit interaction of OH had suppressed the expected

Jahn–Teller distortion. An abrupt change in the structure occurred for n¼ 10, where the

OH was located inside an incomplete icosahedral cage. The addition of further Ar
atoms completed the cage and began the formation of a second solvation sphere. In

contrast to the behaviour of CH in Ar, OH could be incorporated within a symmetric

cage due to the smaller difference potential and stronger spin–orbit coupling.
Having located the minimum energy structures for OH(X )–Arn, Xu et al. [22] went

on to examine the quantized vibrational states of the clusters with n¼ 4–12 using large-

scale variational calculations. To reduce the problem to manageable dimensions, the Ar
cage was frozen. The OH centre of mass and polar angles were treated as free variables

(five-dimensional motion on two potential energy surfaces). The evolution of the OH

bending and translation energy levels was followed as a function of cluster size. As
expected, the smaller clusters exhibited splittings of the various P states that were

qualitatively similar to the pattern for OH(X )–Ar. The vibrational frequencies for the

translational modes increased with the cluster size. The incorporation of OH inside the
cluster at n¼ 10 had a dramatic effect on the energy levels of the bending mode.

Demonstrating a beautiful complementarity, the bending levels for the n¼ 10 and 11
clusters were inverted forms of the patterns for OH–Ar2 and OH–Ar. Here the atoms

missing from the icosahedral cage acted as holes in an otherwise symmetric

environment. Symmetry dictates that the spatial degeneracy of the OH j-levels should
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not be broken is an icosahedral cage. The calculations were essentially in
agreement with this expectation, but small splittings were predicted as the rigid cage

from the cluster optimization was slightly distorted. The frequency in the translation

mode was about 60 cm�1 for the closed cage. Xu et al. [22] noted that the rigid cage

model would not be successful for CH(X )–Arn as the distortion of the cage caused by
the empty p� orbital would need to be able to follow the CH for motions involving

internal rotation.
Theoretical studies of SH(A)–Nen and OH(A)–Nen have been carried out by Lee et al.

[101–103]. As the radicals are in the orbitally non-degenerate 2�þ state, these clusters
can be treated as closed-shell systems to a good approximation. In their first papers on

this problem, Lee et al. [102, 103] examined SH(A)–Nen and OH(A)–Nen clusters with

n¼ 1–4 to evaluate the suitability of adiabatic diffusion Monte Carlo (ADMC) methods
for calculations of the bound state properties. The advantage of this method is that it

has favourable computational scaling for the treatment of moderately large systems.

The disadvantage is that it is difficult to treat vibrationally excited levels using ADMC

as prior knowledge of the nodal surfaces of the wavefunctions is required.
The equilibrium structures of SH(A)–Nen and OH(A)–Nen clusters were determined

for additive pair-potential models that used empirical potential energy surfaces for the

SH(A)–Ne and OH(A)–Ne interactions. The minimum-energy structures were

consistent with the HX moiety interacting with a symmetric Nen cluster. For n¼ 2
the T-shaped Ne2–HX complexes with the H atom pointing towards the mid-point

of the Ne–Ne bond (C2v symmetry) were lowest in energy. The next two isomers

were linear Ne–HX–Ne and NeNe–HX. The global minimum for Ne3–HX was the

tetrahedral-like structure (C3v symmetry) with T-shaped Ne2–HS–Ne (C2v) as the
next most stable structure. The complexes for n¼ 4 yielded different equilibrium

structures for SH and OH. Both were based on a Ne5 trigonal bipyramid with one of

the equatorial Ne’s replaced by the HX group. However, for SH–Ne4 the H atom

points towards the mid-point of the remaining equatorial Ne’s (C2v) while for OH the
H atom points towards one of the facets of the trigonal bipyramid (Cs symmetry).

The next lowest energy isomer for both SH and OH was the bipyramid with sub-

stitution of one of the axial Ne’s (C3v).
ADMC calculations for the vibrational ground states of the clusters showed that

the zero-point energies were always a substantial fraction of the classical dissociation

energy for HX–Nen!HXþnNe. The factor (De�D0)/De was greater than 0.4 for all

of the clusters examined. From analyses of the wavefunctions and rotational constants,
Lee et al. [101, 103] were able to show that the average structures for the zero-point

levels were close to those of the global minimum energy structures, despite the fact

that the barriers between low-lying minima were below the zero-point energies.

Calculations for vibrationally excited levels of Ne2–HX were reported. For the Ne2–SH
complex the five vibrational modes of the T-shaped isomer were characterized. Similar

results were obtained for Ne2–OH, with one interesting difference. Calculations for

the OH in-plane bending fundamental exhibited convergence problems that were traced

to the existence of a nearby state belonging to an excited bending level of the linear
Ne–HO–Ne isomer. Variational calculations for SH–Ne2 and OH–Ne2 were used

to evaluate the validity of the ADMC results. Lee et al. [102] determined the energies

of the first 25 vibrational levels of both complexes. Good agreement between the
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variational energies and those from ADMC was obtained for the zero-point energies
and the fundamentals for the T-shaped isomers. Vibrational progressions belonging
to other distinguishable isomers were also predicted by the variational calculations.
These included the levels of the two linear isomers (Ne–HX–Ne and NeNe–HX) and
an unusual combination state with an average structure that was L-shaped. The density
of states for the Ne2–HX complexes was found to be of the order of one vibrational
state per waveneumber. Fortunately, the spectroscopic data indicate that very few of
these modes are active in the A–X spectra, so it has been possible to obtain well-resolved
data. The rich dynamical behaviour expected of the Ne2–HX complexes is sufficiently
intriguing to justify the additional efforts that will be needed to assign the existing
data and extend the spectroscopic characterization of these complexes.

6. Conclusions and future directions

Extensive experimental and theoretical studies of the Rg–HX complexes have provided
a clear picture of the factors that govern the interaction potential energy surfaces
and the ro-vibronic energy level patterns that develop from the coupling of the
electronic and nuclear degrees of freedom. It is apparent that the interaction forces
are predominantly physical in nature, even when the radical is in an electronically
excited valence state. Consequently, the general characteristics of the potential energy
surfaces are determined by the physical properties of the radical. The electronic
configuration of the radical is a particularly important factor, to the extent that the
topologies of the potential energy surfaces, and the relative magnitude of the difference
potential for orbitally degenerate states, can be anticipated from knowledge of the
orbital occupation. One example of this trend is the observation that the electronic
states of an Rg–HX complex that are derived from a common electronic configuration
have very similar potential energy surfaces.

Current ab initio electronic structure methods are capable of predicting good-
quality potential energy surfaces for the ground and electronically excited states of
Rg–HX complexes. However, it is essential that the calculations be carried out using
a sophisticated treatment of the correlation energy, a large basis set, and corrections
for the basis set superposition errors. RCCSD(T) calculations with basis sets that
include mid-bond functions have been very successful. Bound state calculations using
these surfaces yield predictions that are close enough to the observed spectral patterns
that they can be used to establish reliable assignments. Small adjustments of the
potentials typically yield energy level spacings and rotational constants that reproduce
the experimental results. For some of the Rg–HX complexes reported here the analyses
of the spectra are incomplete because the correlations between the theoretically
predicted energy levels and the observed transitions were ambiguous. It is probable
that most of these problems could be traced to the use of electronic structure calcu-
lations that were not of sufficient accuracy, and that further progress could be
made by recomputing the potentials using higher-level methods with larger basis
sets. Ground state potential energy surfaces derived by fitting to microwave data
appear to be accurate, but there are few examples where the ability of these surfaces
to predict vibrationally excited levels can be tested against experimental data.
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Further measurements using SEP and high-resolution IR techniques are needed
to develop and validate the ground state potentials. Note that the conclusion that
Rg–HX radical complexes are physically bound is based on data for the complexes
where Rg¼He through Kr. There is evidence from matrix isolation [104] and gas
phase emission spectroscopy [105] that indicates chemical bonding for OH–Xe (similar
matrix evidence exists for chemically bound Xe–CN [106] and Xe–C2 [107]). It is
possible that several of the Xe–HX complexes will exhibit incipient chemical bonds.

Now that accurate potential energy surfaces are becoming available for many
Rg–HX pairs, the foundation has been laid for studies of clusters that contain
multiple rare gas atoms. Although this topic has not received much attention from the
experimentalists, it is evident that spectroscopic studies of larger clusters are feasible
using established techniques. The fact that hydride radicals still emit fluorescence
when trapped in rare gas solids shows that non-radiative relaxation processes will
not preclude the application of techniques that rely on LIF detection. Hence the clusters
can be characterized using electronic spectroscopy and UV–IR double resonance.
Theoretical methods for treatment of the dynamics of Rgn–HX clusters are being
developed and the results of calculations for CH–Arn and OH–Rgn complexes
show that the properties of open-shell clusters are qualitatively different from those
of their closed-shell counterparts. Future studies of the Rgn–HX clusters should
provide detailed insights concerning the way in which an inert solvent cage influences
the properties of a reactive molecular fragment. Eventually it is hoped that the results
from such studies will facilitate the transfer of our extensive knowledge of gas-phase
reaction dynamics to the problems of reactions occurring in solution.
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